IwGame Game Engine SDK Programming by Pocketeers Limited

IwGame Game Engine SDK
Programming v0.36

Developed and maintained by Mat Hopwood of Pocketeers Limited (http://www.pocketeers.co.uk).
For support please visit http://www.drmop.com

This document is protected under copyright to Pocketeers Limited @2012.

Page 1 of 229

http://www.pocketeers.co.uk/
http://www.drmop.com/

IwGame Game Engine SDK Programming by Pocketeers Limited

Table of Contents

L0 TWGAIMIE. ..ttt ettt b e et e bt e et b e e et e bt e et e e bttt e ettt e e e abb e e e narree s
1.1 What 18 ITWGAME? ...ttt ettt et e st e et e st e e bt e sabeenbeesneeenseesneeas
1.2 Games Created With IWGAME.cc.eiiiiiiiiiiiieeeceeee e e e

1.2.1 CONNECTICONS. ...ttt ettt ettt et ettt e st e et e e s st e eabeesabeenbeeesbeenbeesnbaenbeeennseeeenseeaas
1.2.2 GAME OF 101ttt sttt ettt e st e e st as
1.2 InStalling IWGAMIE.c..eoiuiiiiiiiiiiieeet ettt sttt et s
1.3 Usage Rights and WarTanties..........cccueeruieriieiiieriieieesiieeieeeieeereesieeeveeseeeveesseesseeseessnsaeeensseeens
1.4 Brief How To on USINgG IWGAME.cocuiiiiriiiiiiiiieeieeitcieeeeit ettt
1.5 TWGAIME COMNCEPLS. ..eeurireeurieeiiieesiieeeteeesteeestteeeseteeetteeessreeassaeessseeessseeeasseeeasseesnsseesasseesnsseesannssees
1.5.1 Standard Class DefINItioNS.ceoueeruiieiiieiieeiieeie ettt ettt et e e es
1.5.2 GEtters and SELETS.evuieuiiriietieieeiiesteete ettt sttt ettt et et e st e e et e et e e bt e ebeeenseeesneeenneeas
1.5.3 TNt / REICASE.....eeeiieeeieiie ettt ettt ettt ettt e sat e e bt e s aeeebeeeaneas
1.5.4 SINEIELONS.eiiiieieiieieeeie ettt ettt et et e et e et e e bt e s taeebeesaaeesseessbeensaessseesseessseensaensseeensseeas
1.5.5 Event NOtHICAION.cc.eiiiiiiiiieiieie ettt ettt ettt sttt e et eeenteee s
1.5.6 XOML Mark-up Lan@UaZE..........cccueeruieriieiiieniieieeeieeieeeeeeteeseeeteessseeseeseseeessssaeesssseeenns
1.5.7 Local and Global RESOUICES..........ccuieuiiiiieiieiie ettt ettt eeiaee e
1.6 Example Code and TULOTIalS..........cccvieriiiiiieiieeii ettt et e et siaeebeesaaeenseeseneensneees
L7 KINOWIL ISSUES. ..ttt et ettt e ettt e et e et e e st e e sabeeeeabee e e eneeeees

2.0 CIwGame Object — The Eye N the SKY.....c.oooiiiiiiiiiiicieeeeteeeete e
2.1 INEEOAUCTION. ¢ttt et ettt et e et e e bt e et e e sabeenbeesabeenbeesneeenbeeenseenseennene
2.2 Implementing our OWN CIWGAME.cccuieriieiieiieeieeie ettt eteeteeebe et esbeeaeeesebeeeesbeeeensneees

3.0 CIwGameScene Object — A Place for Actors to Play.........ccccooeeviriiniiniiiiiniiiiicccceec e
3.1 INETOAUCTION. ...ttt et e a ettt et e bt en b e s bt e bt entesaeenbeentesaeennees
3.2 CreatiNg @ SCENMEC...c..eiiuiiiieitetiete ettt ettt ettt ettt b et e et sb e e bt ea b e s bt et e eatesbbeenbteesateesateeeanees
3.3 VITTUAL CANVAS. c...eiiiiiiiieiiieite ettt ettt e sb e et e bt et e sbb e et e e sat e e bt e sbeeeaneenaeees
3.4 Scene ObJect MaNaZEMENL.........coueiuiriiriieieeiteeie ettt ettt ettt ettt sbe et e seeeesbteesateesanees
3.5 Scene EXtents and CLPPING.......cc.eeoieiiieriieeieeiiieeieeieeete et eseteeteeseeeeseessaesseesseeeseessssseesnsseeeans
3.0 SCENE CAIMETA. ..c.uueieiiiiiiiieeeit ettt ettt et e et e ettt e et e e ettt e sab e e e sabeeeaabeeeeeeabbbteeeeennbaaeeeeas
3.7 Potential Colliders and Collision Handling..............ccecvuieeiiiniiiiienieeiieiecieeeeeiee e
3.8 CUrrent SCENE CONCEPL.....eiiuiiiiiiiiiiiieeie ettt ettt ettt ettt s e sbeesaneesbaeeesebeeeesaneeeenas
3.9 ACtOr MANAQZEIMENL.........iiiiiieeiiieeeiiieeite et ee et e ettt e et e e etaeesaaeessaeesnsaeesnsaeeanseeensseeensseeensseeensnes
3.10 Scene Naming and FINding SCENES.........cccvevuiriiriiiiiiiiniieientceee ettt
311 SCONE LLAYETS..cccuuiiiiiiieiiiie ettt ettt et et e et e et e e et eeentaeesssaeeenseeensseeessseeennssaeaesennnssneeens
312 SCENE OFIZIN....uiiiiiiiiiieiientt ettt ettt ettt ettt et be et e eat e sb e e bt et e sbeesteeateeabe e e bt e e bt e enneeenaneas
3.13 Scene Visibility and ACtiVe State.........ccceevviieiiiiiiieiiecie ettt ettt sre b e e eenee s
314 SCENE TTANSILIONS.eeeeieutieeiieette ettt etee et et te st eteesate et eeeateeseesabeenseesaseenseesnseebeesnseesnseeesnnseeaan
3.15 Creating a Scene from XOML........c.ooooiiiiiiiiieeceeee e e e e e
3.16 Animating Scene COMPONENLS.ccueriireerierieniieieettenie et steeste st esteeeesbee st essesseenseeasesseeenees
3.17 Creating @ CUSTOM SCEMC......cccuueieiiieeitieeiteeeiteeeriteeeiteeeiteeeeaeeetaeessaeessseeessseeesssaeessseessesnsssees
3.18 Creating CUSTOM ACTIONS.coutitieterieeieritentt ettt ettt ettt et ste et sat et et e sbeenbeeatesaeeenareenaaees
3.19 AUGMENTING SCOMES.uvvieeuiiieeiieeeiieeeieeerieeeteesteee ettt e saeeesseeesnseeessseeessseeasseesnsaaesnsseesnsneennsees

4.0 CIwGameActor Object — Sprites With Brains........c..coceeiiiiiiiiiininieieneneceeecseeeseeseeee
4.1 TIEOMUCTION. ...ttt ettt ettt et e et e et e e e st e sbeensesete bt entesneesseenseeneeenne
4.2 CTEALINEZ ACLOTS...c.utitieutietieteeiie ettt ettt ettt ettt sb ettt esbe et e st e sb e et e s et e s bt eabeeatesabeesabeeeateeennees
4.3 Creating a CIwGameA CtOrIMAZE.......cccuvieeiiiieiieeeie e e e e e
4.4 TEXt BASEA ACLOTS. ..c.ueteutieiiietieeiee ettt ettt ettt et e et e e bt e s ateesbeesseeeabeesateeabeesnteeanbaeesnbeeesnneeas

Page 2 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.5 PartiCle SYSTEIM ACLOTS.ccccuiiiiiieeiiieeeieeeetteesteeeriteeetteesreeesteeessseeessseesssseessseessseessseaesesnsssees
4.6 ACTOT LITETIMES. .. .ottt sttt et sb et sttt et e bt st eeabeeenbeeenaees
4.7 Actor Naming and FINding ACLOTS.......ccuuieiiieeiiie ettt eiee et et e e ee e e et e e sneaeeeeenneeeas
RN (o) o Y o1 OSSPSR
4.9 Moving, Rotating and SPINning ACLOTS..........eecveeerieeriiieeiieeectteeeieeeeteeesreeesreeeeeesenseeeeeesssnees
4.10 Attaching a Visual and an Animation Timeline.............cccceevviiiiiiniieiiienieeiieee e
4.11 Changing an ACtOrS COLOUT.........ccuiiiiiieeiieciie ettt e st e e v e e saaeeesaeeesaeesnsaeesnsnnes
4.12 ObeYing SCENE EXLENLS. ...c.uiiiuiiiiiiriiieiierie et eite et et e et esieeeteesteesebeesseeesseenseesnseesaeeeassseesanseens
4,13 ACEOT LAYCTINE. ... uviieeiieeiiieeiiee et e et e e et te et e et e e e sateeesaeeesaeeessaeesssaeesssaeessseeensseeessnseeeesnnssseens
4.14 Visibility and ACHIVE StAte........cccuieriiiiiieiiieiiieiieete ettt e st e et e st e eebee e esaeeeensaeeeensaeeas
415 RESCIING ACLOTS...cccuuiieiiieeeiiieeeteeesteeestteeeetteesteeesseeessseeessseeessseeesseeasseesssseesnssaasssssensseessennsssees
4.16 COlliSION CRECKING......cviiiiiiiiieiiieiieeie ettt ettt et e e te e s e ebeesabeensbeeeensbeeeensseeeensseeas
4.17 Creating an Actor from XOML........ccoiioiiiiiiiicie et e e e e e e e e eneeas
4.18 Animating AcCtOr COMPONEILS.ccueerieeriieriiertierteerteesteeteeseeesseessseeseesssessseeessseeessseesssseens
4.19 Creating @ CUSTOIM ACHOT.......ceiiiieeeeieeiieeeitteeeitteeeteeesteeesteeessseeesssaeassseeasssaeassseesssseesssseessseeennes
4.20 Modifying an AcCtOrs BERAVIOUT.........cc.eeiiiiiieiieiiieiiecie ettt ettt et e e e e eeaee s
5.0 CIwGameString — String Building Without Fragmentation.............cccccoveeviiiieiiieriie e
5.1 INEEOAUCTION. ..c..eitiiieteee ettt ettt et sb bt e st sbe e bt et e see e beentesbeennees
5.2 Basic String BUildinNg..........cooouiiiiiiieeiieeeie ettt ettt sttt e e ae e e e
5.3 COMPATING SIIINES.....veeeerieiieeiieeiteeieesteestteerteestteeseessaeesseesseeasseessseesseesseessseesssesseesseesssseesssseeans
5.4 Stream Style SEArChING........c.coeiiiiiiiiie et e e e st e e s e e s raeessrae e e e nneaes
5.5 Getting StriNGS VAIUES........coviiiiiiiiiieiieeie ettt ettt et e et eseeesbeessbaeesenbaeesnsaeeensseeeanes
5.5 Other Useful String TOOIS........uiiiiiieiie ettt e e e e e et aae e e e sesaaeeeas
6.0 CIWGAMEFI1e — File SYSTEM ACCESS....cvvieiieiieiiieitieeieerieeeiteesieeebeesteeeteesteeeseessseeessseesensseeeesseeas
0.1 INEFOAUCTION. ...ttt ettt et e sttt e sat e e b e s st e et e e sae e e bt e sabeeabeesaneenneeas
6.2 L0oading @ LoCal File.......c.cooiiiiiiiiiiiiecie ettt ettt et e et eeennaee s
6.3 SaAVING @ LOCAL FIl@ ...ooiiiiiiiiiiieieee ettt et e e e e e e e nnaaeee s
6.4 Loading a Memory Based File..........cccuoviiiiiiiiiieiieieeeee ettt e
6.5 Loading @ REMOLE File.......c.coiiiiiiiiiiiiie ettt et e e e
6.6 Other Useful File TOOIS.......ccutiiiiiiieiierieieee ettt
7.0 CTwGameInput — I Need INPUL.........cooiuiiieiieeee ettt et ere e e e e e e naraeeeeeennes
7.1 INETOAUCTION. ...ttt ettt b et e a ettt sa e bt et sb e bt et e see e beentesbeennees
7.2 ChecKing AVailability........ccccuiiiiiiiiiiie ettt e e e e s be e e seb e e e e eentaaeeeeeesnsaaaaeeas
7.3. Single and Multi-touch TOUCKES.........c.cocuiiiiiiiieiiciieceeee e et e e ens
7.4 Working With TOUCKES..........ciieiiiiiiieciee ettt e et e et e e e e asa e e e e e enanaaeeens
7.5 Checking Key / BUttOn States........c.cccieiiiierieeiieiieeieerie et esiee st e sveeteesnneenseeseseeseessseesensseens
7.6 On Screen KeybOard..........cccuviiiiiiiiiiieeiie ettt ettt e e e st e e s tae e s aae e sraeensaaeeeennnenees
7.7 ACCEIETOMELET INPUL.....eeiuiiiiieiiieiiecie ettt ettt et e et e et e e sabeebeessseenbeessneensaensseenseeas
7.8 COMPASS INPUL...eeeeiiiiieeeiiiee ettt et e e et e e e s abe e e e esaeteeeeensaeeeesssaaeeeeeesssnnnsssssnnaneees
7.9 Input and the Marmalade Emulator...........cccoeoiiiiiiiiiiiiiiciieiecieeeeee e
7.10 Other Useful Utility MethOds..........eiiiiiiiiiieiiie ettt et e e e e eaaaaee s
8.0 CIwGameTimer — Time and TIMETS.........covueriirieriiiieniieieetert ettt ettt e saree e
8.1 INITOAUCTION. ...ttt ettt e bt e b e et et e et e e bt e sabeebeesabeenbeesneeeens
8.2 Getting the CUITENT TIME......ccuiiiiieiieiie ettt eite et ettt e et e ereeteesbeebeessbeeseessaeenseessnsaeesnseeaans
8.3 Creating and USING TIMETS.....cc.ueieiuiieeirieeeitieeeieeeeieeeeteeeeiteesstteesteeesaaeesseeessseeesssseeeesssssnseaeassnns
9.0 IwGameHttp — Playing Outside the BOX..........cccieiiiiiiiiiieciieiiecieee e
0.1 INETOAUCTION. ..ttt et ettt et e st e et e e sat e e bt e s st e eabeesabeenbeesabeeabeesaneenneeas
9.2 The HTTP Manager CIwGameHttPIMAaNagET..........ccccueeuierieeiieniieeieenieeereesieeeeeveeeesereeesnereeeenes

Page 3 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

9.3 TP Addresses and USEI-AZENLS........cc.uieeuieeiiieeiiieerieeesteeesiteessseeeesseeessseeesseeesssessssesessseeesesssssees
0.4 POST aNd GET ...c.eiiiiiiieeteeee ettt sttt et sb ettt sat ettt eenbeeenbeeenanes
0.5 Setting UpP HEaATS.iiieiieeiieeee ettt ee et e et e e ae e e taeeesaeeenaeeessaeeeeeennnseeas
9.6 Performing @ GETcooouiiiiiiiieieeie ettt ettt ettt et e s abeeseesnbeenbeessseenseesaneensaeas
9.7 Performing @ POSTooo ittt ettt e e st e e st e e st e e e sstaeesssaeesaaeensnnes
10.0 CIwGameAudio — Say NO T0 Silent MOVIES.cccueeruierieeriieniieeiiesieeieesieeeteesreeeeereeeeereeesnneees
LO.1 INEEOAUCTION. ...ttt ettt ettt et e be e st e bt e st e e bt e sab e e bt e sateenbeesaneenneeas
10.2 The Audio Manager CIWGAMEAUAIOc.eeviieiieiiieiieiie ettt e e s
10.3 Adding AUdIO RESOUICES........eeeiiieieiiieiciieeieeetee ettt e etteeeieeesteeesbee e saaeesseeeessnsnsaeeeeesnnssnaaeens
10.3.1 Adding Sound EffECtS.......c.eeiiiiiiiiieiiecie ettt e e e sinae e
10.3.2 Creating @ RESOUICE GTOUP.......uieiiiiieiiieeeiieeiieeesieeesteeesireeeereeeeeeessaeesseeesseeeeessssneeeeans

10.4 Playing and Modifying Sound Effects..........cccoeoiiiiiiiiiiiniiiiicieee e
10.5 Playing Streamed MUSIC.......ueiiiuieeiiieeeieeeieeeteeesiteeeteeeeteeesteeesaaeeessseeessseessseeessssseeeesnsssseens
11.0 CIwGamelmage — The Art 0f GAME.........c.eecuiiiiieiiieiieeieeeie ettt et ereeaeeeeeee
L1 INEEOAUCTION. ¢ttt ettt et e ettt e s et et e sateeabeeeaeeenbeesaeeeabeesanneeas
11.2 Creating an Image from @ RESOUICE..........c.eeruiieiiiriiiiiieiieeie ettt ettt
T1.2.1 AddINg TMAZES.......cceiiieeiieeeiie ettt ettt e et e e st e e tteeesaeestaeesssaeesssaeessseeenssaeesseens
11.2.2 Creating @ RESOUICE GIOUP.....cc.ueiiuiiriiieiieriieeieestie et esitesteestteeeteeseessseeseesssaeeessaeeansseeenns

11.3 Creating an Image from MEMOTY.......ccccuiieiiiieiiiieiiieeeiieeeteeesteeesteeesveeesaee e e e e e saareeeeeesnnraaeaeens
11.4 Creating an Image from a Web RESOUICE...........cccuiiriieiiieiiieiieciecieeee et
11.5 Creating Images from XOML.........cccciiiiiiiiiiiecie et e et eeaae e e saeesaaeeenenes
12.0 CIwGameSprite — A SPrite fOr Life.......cccuoiviiiiiiiiiiieciiee et
12,1 TNEEOAUCTION. ...ttt ettt e b e et e bt e s et e e bt e sabe e bt e ssbeenbeesateenneeas
12.2 SPIILE MANAZET.......eeiiieiiieeiieeiieeiie et eeite et et e et e estteebeesaeeesbeeseeeaseeseessseenseessseenseessseenseesnseenseens
12.3 Creating a Bitmapped SPIIe........eeeciiiiiiieeciie ettt evee e e e e reeeeareeeesee e nenes
12.4 Creating @ TEXt SPIILE......cciuierieeitieeieeeieeeteerieeeteette et e erteesbeesseeesseesaessseenseessseeesnsseeessseeeensseens
12.4 Creating our OWN CUSLOM SPIILES.....cccviieiiieiiiieeeiieeeiee et e esteeetteeeeaeeseeeessteeessaaeessseeeeennnnnes
13.0 CIwGameAnim — Life and Soul of the Party...........cccoeeieriiioieniiiieeeeeeeeee e
13,1 INEEOAUCTION. ...ttt ettt ettt e b e et e bt e st e e bt e sab e e bt e sateebeesnneenneeas
13.2 Animation Frame Data.........cccooiiiiiiiiiiiiiieeeeee e
13.3 Animations and the ReSource Manager.............ccoccvieeriieiiiieeiiieeieeeee et eesveee e e e eavaeee s
13.4 ANIMAtiON INSTANCES.eeitiiiiiiiiitietieieeit ettt ettt ettt et st e bt et eeaeenbeenteseeeeaee
13.5 Animation Targets and Target PrOPEITIES.......cccvieecvieeirireeiieeeiieesieeesreeesreeesaeeserreeeeeeeneaaeeens
13.6 ANIMAtioN TIMEIINE'S. .. .cviiuiiitieiieiesitee ettt ettt sttt be e st e s b e e
13.7 Resource Manager and TIMEIINES.........cc.eeeiiiieiiieeiieeiee et e e e e
13.8 Working With ANTMAtIONS.cccuieriiiiiierieeteeeteeieeree et eette e bt eseeeeebeeseesbeesseessseeseessnseeesnseeens
13.9 Creating a Basic Animation i Code...........ceevviiiiiiiiiiieeieecee et e sre e eae e e e e
13.9 Creating a Basic Animation in XOML...........ccooviiiiiiiiiiiiiienie ettt
13.10 Creating an Image ANTMAtION.........ccueeerireeriieeeieeeeieeesreeesreeesreeessreeessseeesseeessseeessseeesessssssees
13.11 CIWGaMEANTMULL ..ottt sttt ettt
15.0 ClwGameAds — Wanna Make SOmMeE MONEY?........cccoviieiiieeiiieeiiiecieeeteeeereeeeveeeseveesseeaeeeeeenens
15,1 INEEOAUCTION. 1.ttt ettt et s b e bt et e bt et e et e sbe e bt e st e eaeenbeeneesaeeenee
15.2 Setting up and Updating IWGamMEAdS..........coeviiiiiiieiie ettt e e e e eraeae s
L5.3 A TYPCS ittt ettt ettt ettt ettt et e st e et e e et eeabeesabeesbeeesbe e seeenbeenaeeeetbeeeenbeeeennreeas
15.4 REQUESTING AdS...ccciuiiieiiiieiiieeiiee ettt ettt et e e st e e e taee et eesstaeesaaeessseeesssseessseeenssssaeeesennnssaaeens
15.5 Working with CIWGaMEAASVIEW.......ccciiiiiiiiiiiieiie ettt e e beaeeenneees
15.6 Add ANTIMATOTS. ...entiiiiieiieeit ettt ettt et e s at e et e e ae e s bt e bt e eab e e bt e sabeenbeeenbeesnbeeasnnseeenn
15.7 ClwGameAdsMediator — The Art of Ad Mediation...........coceeveeiirienienienienieieeeeee e

Page 4 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

15.8 SUpPOorted Ad PrOVIAETS.......cccuiiieiiieeiieece ettt et e et e e e ba e e eneeaeeeennnreeas
15.9 OpenGL CONSIACTATIONS........eevieriieeiieriieeieetie et eiteereesteesteeseeseaeeseessseenseessseeseessseanseesssesnsens
16.0 CIwGameXml — Cross Platform Data...........ccoiiiiiiiiiiieee e
16,1 INETOAUCTION. 1.ttt ettt ettt e bt et s bt et e e sae e bt entesaeenbeeneeseeeenee
16.2 Setting the Memory POOIING.......cc..eiiiiiiiiieceece et e e e e
16.2 Loading an XIML fIle........cccuiiiiiiiieiieiie ettt ettt et e et esebaeeenbaeeensneees
16.3 WOTKing With NOGES.......cccuiiiiiiieiie ettt e e e e et e e e tae e e nnbseeeesesnnnaaaeens
16.4 Node and Attribute TEEration........ccueeruieeiiieriieeieecite ettt ettt et e e teesiaeebeeseaeesssaeeennbeeessneeas
16.5 AtTIDULE QUETY...eeeivieeiiieeiiee ettt e ette e et e et e ettt eesaaeeetaeeestteesssaeessaeesaseaeassaeessseeenssssseaesennssseaeens
16.6 Creating an XIML fIl.........ooouiiiiiiiieieciiece ettt ettt e e e ebeesaaeeenenee s
17.0 ClwGameDatalO — Stream Style Access t0 MEeMOTY.......oeecvieerieeeiiieeieeeieeeireee e e eereeeee e
171 INEEOAUCTION. 1.ttt ettt ettt ettt e bt et s bt et e et e sbte bt en b e eaeenbeenteseeeenee
17.2 INPUL STECAIMIS. ...uvtiieeeiiiie e ettt ettt e ettt e e ettt e e e et e e e e saaaae e e e seaeeeeanssaeeeennssaaessnnsseeeseasssnnnnssnnnnes
17.3 OULPUL SEECAIMIS.....eeeuiiieeiiieeeiieeeeiee et ee et te et ee sttt eetteeebeeesabeeesabeeenssaeessaessseaeseannsseeesessnnneaeeeens
18.0 ClwGameResource — Getting a Handle on the Beast...........ccccoeoveeiiiiiiiiieciiceece e
I8.1 INErOAUCTION. 1.ttt ettt ettt st e bt et s bt e st e et e sbe e bt en b e eaeenbeeneeseeeenee
18.2 Creating @ RESOUICE GIOUP......ccuviieiieeeiieeiiieeciiee ettt e eite e et e e e teeesbaeesabeeessseeessseeensseessseeeennssnes
18.3 RESOUICE MANAZEIMENT.eeiiiiieiiiieeeiiieeeieeeeiteerteeeitee et ee et eeetteeetaeesnbaeesnteeesnseeensseeennseeensnnns
18.4 GlODAL RESOUICES......uvieiiiiieiiiieeiie ettt ettt e et e e tte e et e e e teeesaeeessbeeessseeesseeesseeessseaaseensssaeeens
19.0 CIwGameXOML — Welcome to the Easy Life.........ccccoeviieiiiiieiiieieciieececeeeee e
19,1 INEOAUCTION. ...ttt ettt e b e et e bt e e st e e bt e sab e e bt e sabeenbeesaeeenneeas
19.2 Loading @ XOML fI1€......cccuiiiiieiiieii ettt ettt ettt st et e e e e etbee e ensseeeensseeas
19.3 TYPES Of XOML TaES....cceiviiiiiieeciiieecieeectte ettt e etteestteesteeesteeessaeessaaaesssaeansseessseesnsseesnsseennsnns
19.3.1 RESOUICE GTOUPS....evieeuiiieeiiieeiieesiieesieeesiteeesiteeesitteessseeesteessreesssseessseeesseeesseeesssnnssneeesans
19.3.2 IIMIAEES. .. vteeeeieiieeeeitee e et te e ettt e e ettt e e e et e e e esaaeeeeeasteeeeenseeaeesnnsaeeeennsseeeeennssbnnneaaaaaeaaeeens
19.3.3 ANIMALIONS. ..cuveitieiieiteeiterteet ettt ettt ettt et eatesb e et eatesb e et e eatesbeenbesatenbeesabeesnbeeenbeeeneeas
19.3.4 TIMEIINE.eeiiieiiee ettt ettt et e b e et et e et eeeanbe e e s nbeeesnneeennes
19.3.5 ACTOTS. ettt ettt ettt et a e b e at e et sa bttt e et e e ebree e e
19.3.6 SCOIMES. ..ceeeuitiiie ettt ettt e et e e e et e e et e e e s e setaeeeeansaeeeeannsaeeeennsbaeeeensaeeeennnsaaeeeas
19.3.7 SRAPES.....uvieiieeiiieiie ettt ettt ettt ettt e st e tee et e e bt e e nbe e bt e s abe e beeasbeeteeeennbaeeanraeeeannaeeenns
19.3.8 BOX2AMALETIALS.ccuviiieiiiieciie ettt et et et e e st e e s e e sabeeesnseeesnseaeennnnaeaaeeas
19.3.9 SEYLES. . utteiieeie ettt ettt ettt et ettt e eabe e bt e nb e e taeenbeeteeenbeenaeeeentaae s
19.3.10 VarTabIeS......uviieiiieciiee ettt e et e et e e et e e e st eeestbeesssaeesssaaesssaeeasseeenssaeennsssneaeens
193,11 ACHIONS. ..ttt ettt ettt et et h et e at e s bt et sat e s bt et ent e bt et sate bt enteenee
LS 0 B I 16 D 10, I SRS
19.3. 13 TOMPLALES....eeereeiieiieeiieeie ettt ettt ettt e et e e tteesbe e teeesbeesseesnseenseesnseeeansseeeassaaeennsaeennns
19.3.14 FONMES. ...ttt ettt ettt ettt et et e et e e eate s st enaeeseesseenseenaesseenseeneeeseenseeneenseennseennns
19.3. 15 CAIMETAS. ...ttt ettt ettt et e bttt sat e e bt e sab e e bt e sate e bt e esaeesneees
19.3.16 Data BINAING.......cccvieiiiieeiiieeiieeciee ettt et e e e st e e st e e s aeeesaseeessssaaeesennssneeeeeannns
19.3.17 Conditional Variables and ACHONS........cccuieruieriieriieiieeiiesieeieeete et e sreereeseeesseeeenraeeas

L R T BT (016 ¥ 4 <) 4TSRS
19.3.19 BIUSRES. ...ttt sttt et sa et
19.3.20 JOINES. ..utteuteeiiestiete ettt et ete st ettt et et e e st e bt e st e e st esseeneesseenseeneesseenseensesseeanseennseeenseeenseeanreas
19.3.21 PIOZIAIMS. ...eeeiuiieiiiieeitiieeitee ettt e ettt e et e e et e e s eteeesateeetteesnebeesnsaeesnseeesnseeennsssaeeeesannssneeesennnns
19.3.22 Fl@...eeeieie ettt ettt et ettt ettt et s et et e st e b e ent et e e nte e st e e naeeanteennrean
19.3.23 VEACO...c ettt ettt et h ettt h et et b e st s e e et eenteas
19.4 Installing the XOML SChema.........c..coociiiiiiiieeiieecee e e e e aeaaeee s
19.5 XOML WOTKEIOW.......eiuiiriiiiiiieeiteeee ettt sttt sttt sbe et et e e

Page 5 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

19.6 XOML'S fULUTC.....ccouvieiiiie ettt et e et e et e e e tbeeetaeeesseeessseesssseesssaaessseeessseeeennssnnes
20.0 Box2D Physics — Lets BOUNCE........cccuiiiiiiiieiiecieecie ettt ettt eeebaeeenneees
20,1 INEEOAUCTION. ... tiieiit ettt ettt et e et e et e e et e e s beeesaaeeesaaeeessseeessaeesnsseesnsseesssaaensseeensseeessnes
20.2 BOX2AMALETIAL'S. ... eieiieeiiieiieeie ettt ettt ettt et e et e et e st e ebeeenbeesaeenbeenseeenbeeennbaeeennees
20.3 BOX2D WOTIA.....cueiiiiiieeeeee ettt e et e et e et e e e ateeessaeesasaeeenssnaaeeennnnsneas
20.4 BOX2D BOICS....c.uiieiiiiiiieiieiie ettt ettt ettt et e e e ette e beeaeeesbeeseeenbeebaeenbeeteeeseenaaeenseeennes
20.5 BOX2D COllISION.utiiiiiieiiiieeiieeectee ettt et e e tte e et eestaeesateeesateeesssaeesssaeenssaaassaeesennssseeeeeensssees
20.6 BOX2D JOINES...ccuiiiiieiieeiieiie et eeite et etteeteettestteeteessaeesseessseesseessseenseensseanseessseenseensseanseenseesnses
21.0 ClwGameRender2d — Better Control Over Rendering............coccvveeeieeeiiieeiiee e eeieee e
21,1 TNEEOAUCTION. ..ottt ettt ettt ettt e et e st e et e e e taeesbeessaeenseessaeanseessseensaessseanseessseenseennsns
22.0 CIGameFacebook — Lets De SOCIAL.......ccccuiiiiiiieiiie ettt et e e e e e e e eaaeeeeeenees
22,1 TNIEOAUCTION. ..evtieiiieiie ettt ettt ettt e et et e e bt e st e ebeesaaeesseessaeenseessaeanseensseensaessseanseesnseenseennnns
22.2 Create @ FACEDOOK APD...cccuiiiiiieeiiieeiieeesieeesiee et e e tteesteeeeaeeeseseeesaseesssseessseessseessseaeeesnnsseens
22.3 Posting Information to the Users Wall............cccoooiiiiiiiiiiiiiiniieieeeeee e
22.4 MEKB CRANEES......cccviiieiiieeiieeeeieeeeiee ettt e eteeestteesaeeessseeesssaaessseeassaeansseeassseansseessseesssseessseeennes
23.0 In-App Purchasing - IWGameEMAarket.............cccieriiiiiiiiieeiieiieeeeeeeee et
0 T 13 (0T L1 o1 10 3 OSSPSR
23.2 Setting up IWGAMEMATKET.........c.eovviiiiieiieeiieiie ettt ettt eee e et sbeesaaeesbeessneeennee
23.3 AddINg ProdUCES........cccviieeiiieeeiee ettt e et e et e e et e e esaeesataeeestaeesnseeennneeennnes
23.4 MaKing @ PUICRASE.......c.coiiiiiieiiieiiece ettt ettt ettt e eate e aaeenbeessneeeneee
23.5108S In-App Purchase TeStING........cccueeeiiiiiiiieiiiieeie e ctee et e sveeesteeeiaeeeaaeeeaaeessaeesnsaeennns
23.6 Android In-App Purchase TeStiNG..........ccccuieriiiriiiiiieiieeiieeee ettt
24.0 Modifiers — Building from BIOCKS..........c.oiiiiiiiiiiiciie ettt e e
24,1 TNIEOAUCTION. ...evtieeiiieiie ettt ettt ettt e et e et e e bt e tteesbeeesaeesseensaeesseessaeanseeasseensaesnseenseessseenseennsns
24.2 Creating @ MOGITICT.eiieiie ettt et e et e et eeeta e e etaeesasaeesssaeesnseeensseeensnnes
24.3 CIwGameMods and Modifier Creators...........cocuieiiierieeriieniieeieeriieereesieeereeieeeeereeeeereeeeeneeas
25.0 IWGAME EXEENSIONS. .. .cecuiieitiieiiieeeiieeeteeesteeertteeetteesteeesteeesssaeesssaeasssaeasssaessseessseessseessseeeesannes
25.1 EXTENSION SCEIMES.ccuvievieeiiieiieeieestieeteestteeseessaeeteessteasseesseessseeseessseenseessseesseessnsseessnssesesnssees
25.2 EXEENSION ACTOTS. . .utieitiieetieeeiieeeieeestteesteeessseeasseeasaeesssseeassesessseeessseesasseesssseesnsseesssseeesssnssssees
25.2.1 CIWGAMEACOTCONNECTOT. ... veeitieeiiieeiiteeiteeeieeeeieeesteeesaeeesabeessaaeesesnneeeeesennssaeeesannnns

25.3 EXteNnSI0N MOGIFIETS.eeiiiiiiiiiieciie ettt ettt e et e et e e etaeeesaeesssaeesssaaessseeenssaeensnnes
25.3.1 CIwGameMOodFolloOWHEAAING.cccuiiiiiiiiciieiieciteieeee et e
25.3.2 CIwGameModColliSIONNOIY......cccviiieiieeiie ettt e e e e eaeeeeaeeeaaeees

25.4 EXTENSION ACLIONS.eeuvieiiieiieeieeitiesteeteeeiteeteesiteesseessseesseessseesseessseenseessseenseesssesassseesnsseeesssseens
26.0 Variables, Arrays and CONAItIONS...........ceecuiiiiiiieeiiieeeiieesteeeereeeereeestaeeestaeeeseseeesnssseeeessssssseeeesannes
20. 1 INITOAUCTION. ...eutiiiiieiie ettt ettt ettt ettt e e bt esaaeesbeesaaeesbeessbeenseessaeanseessseensaessseenseessseenseennsns
26.2 Conditional VariabIes..........cccuiieiiiieiiiecie ettt et e s e e aae e e snreeenenees
26.3 XIML VATIabIes......ccuviiiieiiieiieeie ettt ettt et et e e b e e beeesaeesaeesbeenbeassseensaesaseensseeeennnes
26.4 System Variables ATTAY.......ccccuiieiiieeiiieeiieeeite et e eetee et e et eeseaeeeteeesaaeessseeessseeessseeessseesnnsnnes
26.5 Working With Variables...........c.eeiuieriiiiiiiiiiciieee ettt ettt e e e enaeenseeeneee
27.0 Programs and COMMANGS...........ccueeriuiiiiiieiiiieeiieeeeiteeeieeessteeesteeesbeeessaeeessaeessseesssseessaeessseeaesannes
271 INIEOAUCTION. ...evtieiieeiieeite ettt ettt e ettt e e bt e st e esbeeeabeesseessaeenseessaeanseessseensaessseenseesnseenseennsns
27.2 WOorking With PrOGIAIMS.......c..eiiiiiieiiie ettt et e et e st e e eaee e saeeesaseeeennnssaeeeeennennes
27.3 Creating Custom COMMANGS..........ccueiiiierieeiieiieeieenee et esieeeeteestteebeeseresbeesseeesseesseeessnseeesnnees
28.0 USCT INEETTACE.ccuveieeiie ettt e et e et e e et e e sateesabeeessbeeessseeesnsssseaeeesnssseeeesannes
28,1 INITOAUCTION. ...evtiiiiieiie ettt ettt ettt ettt e bt et e e beesaaeesseessaeenseessaeanseessseensaesnseanseessseenseennsns
28.2 LCOMS. .ttt ettt ettt e e e et e e et e e ettt e e e et — e e e e et aeeeeantaee e e ntteee e e nbaaeeeatteeeeenraeaeaeeeenn
28.3 LaDCIS. .. utieiieeiie ettt et ettt e et e b e e bt e et e e baeenbeeteeebeenaneenbeeennes

Page 6 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

284 TEXE BOXES. .. uiiieeiiiiieieiitieeeeiit e e ettt e e ettt e e e sttt eeesstaeeeeesnteeeeeanaaeee e nbbaee e e ntaaeeteeeaeeeeeeanaaannnnnnn
285 STHARTS. ... uteeiie ettt ettt ettt ettt et e et e e teeeabe e bt e esbeeseeeaseenbteesbeeseeenbeenbeeeenbeeeetbeeeentreeas
28.0 CANVAS....uteiie et e ettt e ettt e e e ettt e e e sttt eeeeaaaeeeeesstaeeeaasaeeeeasasaeeeeassteeeeansraeeeeannsaaeeestaeeeeanraaaaeens
28.7 STACKPANCL......ootiiiiiieiiicie et ettt ettt ettt ettt e b e ab e e teeenaeenbeeenbeenseeennne
28.8 WIAPPANECL......cciiiiiieceee et e ettt e et e et e e e ta e e e aaeeanbaeeeennnerees
289 LISTBOX. .t euttieiiieiie ettt ettt ettt e ettt et e et e et e e e ta e e be e et e e bt e enb e e beenaaeenbeentaeeseenteeenbeenseeenres
0 LG 5 T USSR
2811 TMAZE VIBW....ecuviiiiieiieeiie ettt ettt ettt ett e e bt e s st e eabaesabeesbeessbesnsaesaseesseessseeassaaesssaaesnseeas
T U NS < A4 1S 2RSSR
2813 WED VIBW....utiiiiieiieciieeiteetie ettt et ettt e s te et esateebeeesbe e st e esaeenseesnseenseassseensaesnsaenseeenssaeennsees
T 1o 3 o7 SR SSRR
28.15 VIACOOVETIAYevieniiiiiiieiieeie ettt ettt sttt e st e esbeeesseensaesnsaeeansseeeenseeas
B KO 0 31 (PRSP
28.17 CONLIOLS COMING SOOM......ueiiirieiieeiieiieeteeriteeteeteeereesseesaseeseessseeseessseenseessseenseessseeesssseesssees

Page 7 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

1.1 What is IwGame?

IwGame is a little more than what one would class as a traditional game engine, it also includes (or
will soon include) much support for none game related functionality such as reading the camera,
compass, sending / receiving data between web servers and requesting / showing ads etc.. IwGame
is more of an object orientated extension of the Marmalade SDK originally designed and built to
lessen the learning curve and to provide a lot of out-of-the-box functionality that is great for game
and app development. The main aim of IwGame is to allow game developers to get started on a
game immediately without having to worry about things such how to read the camera or perform
gets and posts to send and retrieve data from web servers.

IwGame is an evolving open source SDK that enables developers to create games and apps using
tried and tested industry standard game and app programming techniques that are widely used
across the industry today.

IwGame is built upon the incredibly powerful cross platform Marmalade SDK, enabling
unparalleled “native” peddle to the metal game and application development across a wide range of
platforms including Apple iPhone, iPad, Google Android (Phone and Tablet), Samsung Bada,
Blackberry Playbook, Symbian, Palm WebOS, LG-TV, Windows and Mac OS.

In order to use IwGame you will need a copy of the the Marmalade SDK which you can download
from http://www.madewithmarmalade.com

IwGame is currently maintained at http://www.drmop.com/index.php/iwgame-engine/

Whilst Pocketeers Limited does provide limited free support via www.drmop.com and
www.pocketeers.co.uk, we can provide 24/7 dedicated paid support via email, telephone and Skype.

IwGames current feature set includes:

* Native and cross platform
* Free and open source
* Fully documented

* Support for multiple platforms (iPhone, iPad, Android, Bada, BBX, Symbian, Windows
Mobile, mobile Linux, LG-TV, Windows and Mac OS)

* In-app purchasing support for 10OS and Android platforms

* Full user-interface support for easy app development using XOML mark-up. User interface
supports up to 5 simultaneous touch events and can be data bound and animated. Also
supports local and remote XML data bindings

* Layered sprites / sprite management (CIwGameSprite) including 3D depth with centre of

Page 8 of 229

http://www.pocketeers.co.uk/
http://www.drmop.com/
http://www.drmop.com/index.php/iwgame-engine/
http://www.madewithmarmalade.com/

IwGame Game Engine SDK Programming by Pocketeers Limited

projection
* Support for text and fonts. Also support for text based sprites and text based game actors

* Extensible actor / scene / camera system for organising game and game objects. Also
supports multi-part actors with independent animation time lines per part and automatic hit
testing.

* Box2D integration into the scene and actor system as well as XOML. Physical objects,
materials and shapes can be defined declaratively.

* Advanced extensible animation system based on time lines with smooth key frame
interpolation, easing (linear, quadratic, cubic and quartic in and out), delta / absolute
animations. Also supports start, end and repeat events and actions

* Multi-channel audio and music playback
* Video playback and video UI

* Touch and multi-touch support, including multi-touch UI that can handle 5 simultaneous
touches

* Button, keyboard, accelerometer and compass support

* Powerful extensible XML based mark-up system (XOML) — Enables definition of IwGame
objects from XML script such as Scenes, Actors, Images, Fonts, Videos, Animations,
Timelines, Shapes, Physical materials, ResourceGroups, Cameras, Modifiers, Actions,
Events, Variables, Conditional variables, Programs, Commands, Styles, Bindings and
Templates. Includes XML schema enabling validation, intellisense and auto complete.

* Support for programs and command, allowing definition of game and application logic
using mark-up

* Queued POST / GET http communications

* Global and scene local resources, including automated clean-up

* Support for resource groups

* Support for particle system actors

* Auto handles resizing to any size / aspect ratio display using virtual canvasses
* Auto handles frame rate variations to produce smooth animation

* IwGameAd engine which mediates ad collection, display and click processing across
multiple ad providers (12 providers supported to date). Ad system uses an animation system
that is producing 3%-8% CTR

* Support for streamed 10 style access to memory

* Support for simple, fast and memory efficient XML serialisation using memory pooling
* On demand GIF, PNG and JPEG image loading over HTTP

* PNG image format saving

* String builder support reducing memory fragmentation when dealing with strings

Page 9 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

* Platform agnostic File I/O

Timers and other utilities

Supports ultra smooth animation via sub-pixel rendering

Supports batch rendering for optimised image rendering

Full commercial game provided as an example including all code and scripts

Future planned features include:

Web streamed resources (allowing you to change and upgrade your game without having to
resubmit it to app stores)

Tile and zone map engines

Artificial intelligence modules

* Location services integration (IwGameLocation)

Camera and image reel access (CIwGamelmaging)

Social services integration (Facebook, Twitter, IwGameSocial)

Analytics integration (IwGameAnalyitics)

Support for 3D based scenes and actors

Web based game editor

Page 10 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

1.2 Games Created with IwGame

1.2.1 cOnnectiCons

gta)

_T——

Fsinlth

We put together a full game using the IwGame engine called "cOnnecticOns", full source available
with this archive (To see the game in action take a look at http://www.youtube.com/watch?

v=sVa8TWYQEsQ). The game took just under 36 man hours to create including all art work
running very snmoothly and without issue on iPhone, iPad, Andriod, Blackberry Playbook and
amsung Bada with no additional changes made for any of those platforms.

This game is driven mainly by XOML. All UI and levels are fully defined in XOML, including
resources, layouts, animations, events and actions. The only major code written for this game was
the basic counter game logic..

Page 11 of 229

http://www.youtube.com/watch?v=sVa8TWYQEsQ
http://www.youtube.com/watch?v=sVa8TWYQEsQ

IwGame Game Engine SDK Programming by Pocketeers Limited
Development was split into approximately the following times:

* Level design and level XOML creation — 12 hours
* Art production — 12 hours

* Other XOML writing — 6 hours

* Coding — 8 hours

1.2.2 Game of 10

Our long term goal is to enable app and game production for none programmers using XOML and
assets only. As of IwGame 0.36 it is now possible to create simple games and apps in 100% XOML
without the need for additional coding in C/C++. As proof of concept we created the "Game of 10",
which is a simple logic puzzle game where the player has to eliminate all cards from the table by
combindnig cards based on their value. When 3 cards are selected and their value adds up to 10 the
cards are clared. Full source has been included to the Game of 10 in the example folder. The game
only took a few hours to create and every aspect of the game can be altered without a single re-
compile.

Page 12 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

1.2 Installing IwGame

Firstly, download the latest version of the IwGame SDK from
http://www.drmop.com/index.php/iwgame-engine/

If you haven't already installed the Marmalade SDK then grab a copy from
http://www.madewithmarmalade.com

IwGame is currently provided as a Marmalade library project and as well as a number of example
projects showing how it should be used.

The IwGame zip archive that you downloaded contains the following important folders:

IwGame
Docs - Contains documentation
h - Contains IwGame engine headers
Libs - Contains IwGame dependencies such as zlib and libpng
Source — The full source to IwGame
Examples - Contains example apps
TestBed - A test bed app that shows IwGame usage and integration

To open up the test bed app go to IwGame\TestBed and open the IwGame TestBed.mkb Marmalade
project file, this will open up the test bed project in Visual Studio / XCode.

If you take a look at the solution explorer you will see a IwGame filter / folder. If you drill down
you will be able to see the source files and the Marmalade project file that make up the engine.

Now lets take a look at the IwGame TestBed.mkb project file to find out how to integrate IwGame
into your project.

From the MKB we can see that we only need to add two commands to integrate IwGame into our
project:

options
{
module path="../IwGame"

}

subprojects

{

IwGame

}

These commands will tell Marmalade where to locate the project.
Once you have updated your project MKB with the above changes, run your MKB file again to

regenerate your project. You can of course place the IwGame engine anywhere you like, just
remember to change the module path.

Page 13 of 229

http://www.madewithmarmalade.com/
http://www.drmop.com/index.php/iwgame-engine/

IwGame Game Engine SDK Programming by Pocketeers Limited

Note that if you already have something in module path then you can quite easily tag IwGame into
the path like this:

module path="module_path="$MARMALADE_ROOT/modules/third_party;../IwGame"

1.3 Usage Rights and Warranties

Copyright @2012 Pocketeers Limited. All rights reserved.

IwGame and associated classes and components are provided “as is” and “without” any form of
warranty. Yours, your employers, your companies, company employees, your clients use of IwGame
is completely at your own risk. We are not obligated to provide any kind of support in any shape or
form.

You are free to use IwGame in your projects in part or in whole as long as the header comments
remain in-tact. Whilst you are not obliged to mention your usage of IwGame in your products it
would be great and beneficial to let us know as we can publicise your product on our blog and other
web sites / services (Our blog receives over 200,000 hits per month) However, if you use any part
of the IwGame extensions system, which includes extension actors, extension scenes or extension
modifiers then you are required to mention usage of the IwGame Engine in your products credits or
on your products support website. For clarity the following sections of the IwGame SDK are
classed as extensions:

e All user interface classes
* Particles or connector actors
* Programs and commands
* Follow heading modifier

The notification in your product can be in text or image format and can be something as simple as a
thank you in your credits such as “Powered by the IwGame Engine” or “IwGame Engine Powered”.
Alternatively you can include the IwGame logo either in your credits or somewhere in your frnot-
end. The logo is available on the official IwGame Engine support site. If you wish to give credit on
your support web site then please ensure that you place a visible link back to www.drmop.com or
www.iwgameengine.com along with the text similar to that shown above.

You may not use the IwGame Engine or any of its parts to create products that can be used to create
other apps and games for mobile devices without express prior written notice from an executive of
Pocketeers Limited with the correct authority to grant authorisation.

You may not claim the IwGame engine or its documentation as your own work or package it up
and include it in any kind of middle ware product without express prior written notice from an
executive of Pocketeers Limited with the correct authority to grant authorisation. You may not
publicly host any source code that is part of the IwGame Engine, the source will be hosted at

http://www.drmop.com/index.php/iwgame-engine/

Page 14 of 229

http://www.drmop.com/index.php/iwgame-engine/
http://www.iwgameengine.com/
http://www.drmop.com/

IwGame Game Engine SDK Programming by Pocketeers Limited
Please note that these licensing terms apply to all versions of the IwGame Engine.
Also note that IwGame utilises zlib, libpng and Box2D, so please take note of those licenses.

Our aim is to promote IwGame as a viable cross platform game engine built on top of the
Marmalade SDK, so any publicity will serve to not only help increase public awareness of IwGame
in the development community but also increase awareness of the Marmalade SDK, who made this
all possible.

If you would like to let us know that you are using IwGame in your products then please get in
touch with us at admin@pocketeers.co.uk. We also appreciate any comments or feedback.

If you would like us to develop your product using the IwGame engine then please get in touch at
admin@pocketeers.co.uk

All code, scripts and assets that accompany the game cOnnecticOns / Puzzle Friends are protected
under copyright by Pocketeers Limited @2012 and may not be re-used in your existing products.
You may use the code base for cOnnecticOns as a reference / learning tool only. If you have any
queries about what you can and cannot use then please get in touch with us.

1.4 Brief How To on Using IwGame

At this stage I think its important for you to have a basic understanding of how to use IwGame as
this will help you to better understand the rest of this material.

The basic purpose of IwGame is to enable developers to get a game up and running quickly, with
IwGame taking care of all the basic and mundane tasks.

Initially you would create you own game class derived from CIwGame then implement your own
initialisation and clean-up routines in YourGame::Init() and YourGame::Release()

Once you have a basic game class up and running you begin adding scenes to your game. You can
think of scenes as different views / environments with their own purpose. For example, you may
have a scene that contains your main game area and another scene that contains your in-game
overlays / HUD. You may also have a number of scenes that make up your user interface (options
screen, menu, in-app purchases, ad display etc..). You can then add separate entities to each scene
using actors. You can think of actors as smart sprites, they contain logical and visual components.
Actors can be anything from simple in-game objects and effects to something more complex such
as user interface button

As of v0.27 a new mark-up language was added to allow developers to create scenes, actors,
images, animations, animation time lines etc.. using a very simple human readable XML style
language. XOML is similar in style and function to Microsoft's XAML and Adobe's MXML mark-
up languages, so if you are familiar with these then you have a good head start.

Page 15 of 229

mailto:admin@pocketeers.co.uk
mailto:admin@pocketeers.co.uk

IwGame Game Engine SDK Programming by Pocketeers Limited

1.5 IwGame Concepts

It will make explaining how to use IwGame much easier if we explain a few concepts that relate to
IwGame's development up front.

1.5.1 Standard Class Definitions

We like to write neat and tidy code and have come up with a standard system to make classes nice
and readable. A class is usually split into 5 sections:

* Section 1 — Public enums, typedefs and static data

* Section 2 — Properties provide public access to class private data via getters and setters. A
property can be thought of as a private class variable that you want to allow the outside
world to change but in a safe manner.

* Section 3 — Private / protected types, class data and methods (used by the class internally
only)

* Section 4 — Construction / destruction and initialisation.

* Section 5 — Public access class functionality

1.5.2 Getters and Setters

A long time ago I used to have many classes with lots of public variables and as you would guess
many odd and difficult to track bugs to go along with that style of software development.
Eventually I came across the idea of hiding all of my variables away (even those that I wanted to be
public) and used methods to access them instead. These methods are called getters and setters and
we use them extensively throughout IwGame

1.5.3 Init / Release

I personally took the decision a long time ago to not use constructors and destructor’s much because
they discourage object re-use. Instead I like to move all class initialisation code out of the
constructor and place it into my class Init() method, same goes for the destructor and the Release()
method. This allows me to re-initialise and tear down a class without having to actually new or
delete it. This can prove very useful in many situations such as object pooling to reduce memory
fragmentation, where the idea is to preserve the classes memory and re-use it.

Page 16 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

1.5.4 Singletons

We use singletons extensively throughout IwGame because a) they provide global access to a
particular system b) they ensure that only one instance of that system can be created at runtime
reducing the chances of conflict and c¢) They are convenient and easy to use

We use the CDEFINE_SINGLETON(class name) in our header file to define a class as a singleton
and CDECLARE_ SINGLETON(class name) to declare the singleton methods. You will also note
that we use a macro such as:

#tdefine GAME Game::getInstance()

This macros allows us access the singleton using a more readable shorthand, for example:
GAME->Init();
Which looks better and more readable than:

Game::getInstance()->Init();

1.5.5 Event Notification

We use two primary methods of handling event notification:

* C style callbacks - Many of IwGames classes allow the user to be notified of specific events
occurring or to allow the user to tag in their own specific functionality when certain events
occur. For example, when an animation is started, stopped or has looped the user can be
notified by setting the appropriate handler for the animation

e (C++ virtual methods — Where we find it appropriate / convenient (generally when we expect
the user to derive their own class from one of our base classes) we provide virtual and in
some cases pure virtual event methods that the user should implement in their own derived
version of the class. For example, IwGameScene implements a number of virtual event
notification methods NotifySuspending(), NotifyResuming(), NotifyLostFocus() and
NotifyGainedFocus() which should be implemented by the derived scene class

1.5.6 XOML Mark-up Language

XOML (Xml Object Modelling Language) is an XML style language designed and developed
specifically by Pocketeers Limited to allow developers to design and layout IwGame scenes, set up
actors, build complex animations, load resource group's, tie up events / actions and variables etc..
XOML was chosen as it is an easy to understand human readable cross platform text based format

Page 17 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

1.5.7 Local and Global Resources

Resources can be anything from images and animations to Marmalade resource collections.
Resources can be local to a scene or global. Local resouerces are only accessible to objects within a
scene and will be destroyed with the scene when it gets destroyed. Global resources are global to
the game object and are accessible to all scenes and objects contained within those scenes. Global
objects are destroyed when the game is is destroyed. The distiction is important when taking into
account resource names. Two resources of the same type should not share the same name within the
same scene.

1.6 Example Code and Tutorials

The current IwGame distribution comes with a number of an example application that shows many
of the features of IwGame. Below is a list of the current available examples:

* ActorTest / ActorTest2 — Simple examples that show how to display many actors as well
how to use child actors

* Hello World — Shows how to set up a basic game and draw some text

* Hello World XOML — Shows how to set up a basic game and draw some text using XOML

* Basic Ul — Shows how to create a very basic user interface using XOML

* TestBed — A generic test bed that shows many of the different features of the engine
(deprecated and no longer supported)

* Complex UI — Shows how to reate a complex user interfacem shows many of the Ul
controls in use

* cOnnecticOns — A Complete game showing how to use code and XOML to create a full
game that can be deployed across all platforms

* GameOf10 — A 100% XOML driven game, also shows how to use true type fonts

* GameSceneGL — Shows how to mix raw OpenGL with IwGame

* XMLGrid — Shows how to bind XML to a grid

Also keep an eye out for additional sample projects as well as tutorials on our blog at
www.drmop.com

1.7 Known Issues

Page 18 of 229

http://www.drmop.com/

IwGame Game Engine SDK Programming by Pocketeers Limited

2.0 ClwGame Object — The Eye in the Sky

2.1 Introduction

CIwGame is basically the kind of eye-in-the-sky controller of the game engine and can be thought
of as the main loop of the game engine. CIwGame takes care of many things including:

* Initialisation, processing and cleanup of many systems including graphics, input, resource
manager and audio etc..

* Managing and updating scenes

* Sorting scenes by layer order

* Notifying the user of scene change events

* Rendering scenes

* Tracking frame speed

* Processing events such as tapped, touch begin / end

* Processing scene modifiers

* Processing and running programs

You never actually create an instance of CIwGame, instead you derive you own version of the class
from ClwGame like this:

#define GAME Game::getInstance()

class Game : public CIwGame

{
CDEFINE_SINGLETON(Game)

public:

protected:
//// Properties

public:
//// Properties end

protected:

public:
void Init(bool enable http = true, bool enable extensions = true, ,

bool gl conmpatible = false);
void Release();
bool Update();
void Draw();
void PostDraw();
void Save();
void Load();

s

You then implement Init(), Release(), Update() and Draw() methods to provide your own
initialisation, clean-up, per frame update and per frame rendering code. You can also override
PostDraw() to apply post rendering.

Page 19 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

Note that the games Init() method takes two parameter called enable http and enable extensions. If
you plan on using anything relating to the HTTP manager, such as ads, web file / image access then
you will need to pass true to the game object during initialisation. If you plan on usni any of the
extension actors, extension scenes or extension modifiers then you need to pass true to

enable extensions.

2.2 Implementing our own ClwGame

Lets now take a quick look at a bare bones implementation of the above methods:

CDECLARE_SINGLETON(Game)

void Game::Init(bool enable_http, bool enable_extensions = true, bool gl conmpatible =
false)

{
CiwGame: :Init(enable_http, enable_extensions, gl conmpatible);
// TODO: Insert your own initialisation here
}
void Game::Release()
{
// TODO: Insert your own cleanup here
CIwGame: :Release();
}
bool Game: :Update()
{
if (!CIwGame: :Update())
return false;
// TODO: Insert your own custom game update functionality here
return true;
}
void Game: :Draw()
{
CIwGame: :Draw();
// TODO: Insert your own custom game rendering functionality here
}
void Game::Save()
{
// TODO: Insert your own game save functionality
}
void Game::Load()
{
// TODO: Insert your own game load functionality
}

Page 20 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

Note that if you utilise IwGames systems then it is very unlikely that you will need to add
additional rendering code to Game::Draw().

At its heart, CIwGame contains a collection of game scenes (CIwGameScene's) that in turn drive
actors and cameras to provide your games functionality (more on these classes later).

CIwGame enables you to add, remove and search for scenes within the game as well as set the
currently active scene using the following methods:

void addScene (CIwGameScene *scene, bool bring_to_front = true);
void removeScene(CIwGameScene* scene);

void removeScene(unsigned int name_hash);

void removeAllScenes(CIwGameScene* exclude_scene);
void removeAllScenes(unsigned int exclude_name_hash);
CIwGameScene* findScene(unsigned int name_hash);

CIwGameScene* findScene(const char* name);

CIwGameScene* findScene(int type);

CIwGameScene* getScene(int index);

void clearScenes();

void changeScene(CIwGameScene *new_scene);

bool changeScene(unsigned int name_hash);
CIwGameScene* getCurrentScene()

void BringSceneToFront(CIwGameScene* scene);

Note that all visible scenes will be rendered every game frame and usually only the current scene
will be updated.

The CIlwGame class also provides a few additional methods that are very useful:

void releaseTouchFocus(int index, int x, int y, bool allow_bubble = true);
CIwGameActor* getlLastTappedActor(int index);

void setTouchPanEnabled(bool enabled);

CIwGameActor* getTouchFocus(int index)

bool isTouchPanEnabled();

void setMaxTouches(int max);

int getMaxTouches();

void SetBackgroundColour(uint8 r, uint8 g, uint8 b, uint8 a);
void BringSceneToFront(CIwGameScene* scene);

void DisableFocus();

void SetAllTimelines(CIwGameAnimTimeline* timeline);

releaseTouchFocus — Releases the current touch focus sending the end touch event to the focus
getLastTappedActor — Returns th last actor that was tapped

setTouchFocus — Changes the actor that has the touch focus

getTouchFocus — Returns the actor that has the current touch focus

isTouchPanEnabled — Determines if touch panning is allowed

setMaxTouches — Sets the maximum number of touches that can be used

getMaxTouches — Returns the maximum number of touches allowed

SetBackgroundColour — Change the background colour of the game

DisableFocus — Prevents all scenes from receiving focus

Page 21 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

SetAllTimelines — Sets the timelines of all scenes

3.0 ClwGameScene Object — A Place for Actors to Play

3.1 Introduction

Its easier to think about game development if we think in terms of the movie business, we all watch
movies and programmes on the TV which makes it easy to relate to.

A movie usually consists of a number of scenes that contains the environment, actors and cameras.
At the moment, IwGame only supports actors and cameras (environments may be added at a later
date).

A ClwGameScene is responsible for the following functionality:

* Setup and handling of the virtual canvas

* Managing, updating and cleaning up actors

* Managing, updating, rendering and cleaning up sprites
* Managing and clean up of animation data

* Managing and clean up of animation timelines

* Managing and clean up of events / actions

* Managing and clean up of Marmalade resource groups
* Managing and clean up of images

* Managing and clean up of physics materials and shapes
* Managing and clean up of XOML variables

* Managing and clean up of data bindings

* Clipping sprites against the scenes visible extents

* Updating the camera

* Tracking actors that can potentially collide

* Transitions between scenes

* Updating the scenes animation timeline

* Instantiating itself from XOML

* Updating physics

* Updating scene local prograns

Its also worth a major note at this point that any actors that live inside a scene will be transformed

by the same transform as the scene, so if you move, scale or spin the scene then the contained actors
will also move, scale and spin with it. The same can also be said about the base colour of the scene

Page 22 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.2 Creating a Scene

Creating a scene is very simple, as the following code shows:

CIwGameScene* game_scene = new CIwGameScene();

game_scene->Init();

game_scene->setName("GameScene");

game_scene->setVirtualTransform(VIRTUAL_SCREEN_WIDTH, VIRTUAL_SCREEN_HEIGHT, @,
CF_Best, CO_Centre);

changeScene(game_scene);

In the above code snippet we allocate a new ClwGameScene object and called its Init() method to
set up scene internals. We give the scene a name so we can find it later then set the virtual transform
(see next section for explanation of the virtual canvas). Finally we ask the game to change the
current scene to our newly created scene (CIwGame::ChangeScene())

You can create as many scenes as you like and add them to the game, just remember only one can
be the active scene, but all visible scenes will be rendered.

I would like to add some additional information regarding ClwGameScene::Init(), its prototype
looks like this:

int Init(int max_collidables = 128, int max_layers = 10, bool doSleep = true);

As you can see, the method actually takes two parameters (defaults are applied so you can go with
the defaults if you like). The two additional parameters are defined as:

* max_collidables — This the maximum size of the collidable objects list and should be as
large as the maximum number of objects that can possibly collide in your scene. For
example, if you have 100 objects that are marked as collidable then you can set this value to
100

* max_layers — Scenes support object layering, the default number of layers is set to 10, but
you can change this value here

If you would like to prevent the internal Box2D physics engine update then set the scenes
WorldScale to 0:

game_scene->getBox2dWorld()->setWorldScale(0, 9);

This stops the internal Box2D physics update. It can be re-enabled by changing WorldScale to a
valid value.

Page 23 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.3 Virtual Canvas

Targeting a large selection of different phones, tablets and other devices with a variety of screen
sizes and aspect ratios is a bit of a nightmare when it comes to game development. Luckily the
CIwGameScene class takes care of this for us. A scene is quite a clever object in that it can render
itself to any sized / configuration display using the virtual canvas concept. A virtual canvas is
basically our own ideal screen size that we want to render to. The scene will scale and translate int
visuals to fit our canvas onto the devices display allowing us to get on with developing our game
using a static resolution. Lets take a look at the prototype for setting a scenes virtual canvas:

void setVirtualTransform(int required_width, int required_height, float angle,
eIwGameScene_CanvasFit fit = CF_Best, eIwGameScene_CanvasOrigin canvas_origin = CO_Centre);

And an explanation of its parameters:

* required width — The width of the virtual canvas

* required height — The height of the virtual canvas

* angle — Angle of the virtual canvas

» fit— Sclaing method used to fit the canvas to the target screen resolution (none — no scaling,
width - fits using width, height — fits using height, both — fits both using width and height,
best — Fits using width or height whichever scales the best

* canvas_origin — Specifies where the canvas origin will be located

3.4 Scene Object Management

When it comes to coding I am quite bone idle and hate having to track things such as allocating
actors, images / memory for animations etc,. I want something that will let me allocate these types
of objects, assign them then forget about them. ClwGameScene contains a SpriteManager, and a
ResourceManager (will cover these in detail later) that takes care of the things that I don't want
bothering with during development. In addition, if I remove a scene from the game CIwGameScene
will clean the lot up for me when it gets destroyed.

This automated clean-up does come at a very small price however, if you want to add a resource
group to the scene then you will need to do that through the scene itself. Here's an example:

// Create and load a resource group

CIwGameResourceGroup* levell group = new CIwGameResourceGroup();
levell group->setGroupName("Levell™);

levell group->setGroupFilename("Levell.group");

levell group->Load();

// Add the resource group to the scenes resource manager
game_scene->getResourceManager()->addResource(levell group);

As you can see we need a reference to the scene so that we can get to the resource manager. Not too
painful, but thought it best to make you aware of this small caveat.

Page 24 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.5 Scene Extents and Clipping

Scenes have an extents area that can be defined which defines the area in which actors can be,
actors that are outside of the scenes extents are wrapped around to the other side of the scene. This
behaviour can be enabled / disabled on a per actor basis. You can set the scenes extents by calling:

void CIwGameScene::setExtents(int x, int y, int w, int h);

Scenes also allow you to define a visible clipping area, pixels from the scene that fall outside that
area will not be drawn. You can set the clipping area of a scene by calling:

void CIwGameScene::setClippingArea(int x, int y, int w, int h);

The default behaviour is for the clipping area to move with the scenes camera, but this can be
disabled by enabling the scenes ClipStatic state. When ClipStatic is true, the scenes clipping
rectangle will remain static on screen, whilst the contents move around inside the clipping area.

3.6 Scene Camera

A scene has a camera associated with it that allows the user to pan around the scene as well as rotate
and scale the view. All actors within the scene will move / rotate and scale in relation to the camera.
It is possible to switch cameras within a scene, although you will need to manage the lifetime of
these cameras, the scene will only manage the currently attached camera (so do not delete it a
camera if it is assigned to the scene. You can assign a camera to the scene using:

void CIwGameScene::setCamera(CIwGameCamera* camera);

3.7 Potential Colliders and Collision Handling

As a scene processes actors it will build a list of references to all actors that are marked as possibly
colliders, once all actors have been processed the scene will walk the list of potential colliders and
call their ResolveCollisions() method to give each actor a chance to handle its own collisions. Note
that the scene does NOT handle collision detection and response, actors themselves should take care
of that.

Note that actors that have a physics material attached are under the control of the Box2D physics
engine and collision is handled separately (more on this in the actors section)

Page 25 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.8 Current Scene Concept

Because the game consists of multiple scenes and only one scene can have the focus at any one time
we use the concept of the current scene. Whilst all scenes are visible (unless made hidden) and
rendered they are not all processed. By default the only scene that is processed is the current scene.
It is however possible to force a scene to be processed even when it does not have the focus by
calling CIwGameScene::setAllowSuspend(false). This will prevent the scene from being suspended
when another scene is made the current scene.

Scenes can exist in two states, suspended or operational (resumed). Suspending scenes are not
processed but are still rendered. When a new scene is switched to using
ClwGame::changeScene(ClwGameScene® new_scene) the old scene will be put into a suspended
state and the new scene will be resumed. IwGame will notify you when either of these events occur
via the following methods:

virtual void NotifySuspending(CIwGameScene* new_scene) // This event is called when this
scene is being suspended

virtual void NotifyResuming(CIwGameScene* old_scene) // This event is called when this
scene is being resumed

virtual void NotifyLostFocus(CIwGameScene* new_scene) // This event is called when this

scene has just lost focus
virtual void NotifyGainedFocus(CIwGameScene* old_scene) // This event is called when this
scene has just gained focus

In order to receive these events you should implement them in your derived scene class, e.g.:

void MyGameScene: :NotifySuspending(CIwGameScene* new_scene)

{
}

// Add code to handle the scene being suspended

Note that you do not need to derive your own scene class from CIwGameScene as long as you are
happy with the generic functionality that it provides, however you will not have access to the
suspend / resume functionality as C style callbacks are not used in this instance.

You can tie into these events in XOML by implementing the OnSuspend /OnResume events, e.g.:

<Scene Name="GameScene3" OnSuspend="SuspendActions">
<Actions Name="SuspendActions">
<Action Method="ChangeScene" Paraml="GameScene2" />
<Action Method="PlayTimeline" Paraml="GameScene3Anim" />
<Action Method="PlaySound" Paraml="Explosion" />
</Actions>
</Scene>

When the scene is suspended, the actions set SuspendedActions will be executed.

Page 26 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.9 Actor Management

The main reason that scenes exist is to facilitate actors. Once an actor is created and added to a
scene the scene handles their update, rendering and clean up. CIwGameScene contains the
following methods for adding, removing and searching for actors within a scene:

void addActor (CIwGameActor *actor);

void removeActor (CIwGameActor* actor);

void removeActor(unsigned int name_hash);

void removelLinkedActors(CIwGameActor* actor);
CIwGameActor* findActor(const char* name);

CIwGameActor* findActor(unsigned int name_hash);
CIwGameActor* findActor(int type);

CIwGameActor* findClosestActor(int x, int y, int type);
CIwGameActor* findFurthestActor(int x, int y, int type);
void clearActors();

3.10 Scene Naming and Finding Scenes

IwGame is designed to prevent what I like to call “unreliable references”. To me an unreliable
reference is a reference to an another object that can disappear at any moment without the object
that references it knowing about it, this can lead to some pretty nasty bugs that are incredibly
difficult to track down. So instead of simply keeping a reference to an object we keep a name.

IwGame uses object naming quite extensively for major system such as actors and scenes. The idea
is that if we want to speak to a scene from somewhere outside that scenes instance we simply find it
by name using CIwGame::findScene(). Once found we can grab a pointer to it and access it. The
wonderful thing about this system is that if the scene has disappeared when we call findScene() a
NULL pointer will be returned signifying that it no longer exists, allowing our calling code to
determine what to do about it (as opposed to simply crashing or doing something even worse such
as writing all over memory that its not supposed to).

The naming system does add a little overhead to our game but not a great deal as searches are done
using string hashes instead of string comparisons. The tiny overhead is definitely worth the buckets
of tears that you can potentially save from days of tracking down hard to find bugs.

3.11 Scene Layers

Actors within a scene can be depth sorted using layers. Each actor has its own layer number which
decides where it will appear within the scenes depth tree. Actors on higher layers will appear over
actors on lower layers. Actors on the same layer will be drawn in the order in which they were
added to the layer, so later actors will be drawn on top of earlier added actors.

Note that the layering system is not strictly part of the scene engine, instead it is handled by the

sprite manager contained within a scene, but for the purpose of easy access is accessible through the
scene.

Page 27 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

In addition to actor layering, scenes themselves can be layered (up to 10 layers)

3.12 Scene Origin

By default a scenes origin is set at 0, 0, which is the centre of the virtual canvas (usually centre of
screen) for the default transform. However this can be changed when setting the scenes virtual
canvas to either the centre, top-left, top or left. See eIwGameScene_CanvasOrigin

3.13 Scene Visibility and Active State

Scenes can be made visible or invisible by calling ClwGameScene::setVisible(). You can also query
the visibility of a scene using CIwGameScene::isVisible(). When a scene is invisible it is not
rendered.

Scenes can also be made active or inactive by calling CIwGameScene::setActive(). You can also
query the active state of a scene by calling ClwGameScene::isActive(). When a scene is active it is

processed.

Note that a scenes active and visibility states are independent, an inactive scene will still be
rendered and an invisible scene that is active will still be processed.

Page 28 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.14 Scene Transitions

Scene transitions are taken care of by the timeline system. A quick scroll scene transition is shown
below:

<Animation Name="SceneTransitionl" Type="vec2" Duration="2" >

<Frame Value="0, 0" Time="0.0" />
<Frame Value="480, 0" Time="2.0" />
</Animation>
<Scene Name="GameScene" OnSuspend="SuspendActions">

<Actions Name="SuspendActions">
<Action Method="SetTimeline" Paraml="SceneTransitionl" />
</Actions>
<Timeline Name="SceneTransitionl" AutoPlay="true">
<Animation Anim="SceneTransitionl" Target="Position" Repeat="1"
StartAtTime="0"/>
</Timeline>
</Scene>

In the above XOML we create a scene and attach the SuspendActions collection to the OnSuspend
scene event. Note that the timeline was defined inside the scene because it is not requested until
some actor actually suspends the scene. Here's an example showing an actor that raises the scene
suspended event when it is tapped:

<TestActor Name="Playerd4" OnTapped="SuspendScene3">
<Actions Name="SuspendScene3">
<Action Method="SuspendScene" Paraml="GameScene3" />
</Actions>
</TestActor>

Page 29 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.15 Creating a Scene from XOML

Scenes can be created declaratively using XOML mark-up, making scene creation much easier and
more readable. Below shows an example of a scene declared using XOML.:

<Scene Name="GameScene" CanvasSize="320, 480" FixAspect="true" LockWidth="false"
Colour="@, @, 255, 255" AllowSuspend="false">
</Scene>

The scene tag supports many different attributes that determine how a scene is created and how it
behaves. A description of these tags are listed below:

* Name — Name of the scene (string)

* Type — Type of scene (integer)

* CanvasSize — The virtual canvas size of the screen (x, y 2d vector)

* CanvasFit — The type of method to use when scaling the canvas to the devices native screen
resolution (none, width, height, both and best)

* CanvasOrigin — Where to locate the canvas origin(top, left, topleft and centre)

* FixAspect — Forces virtual canvas aspect ratio to be fixed (boolean) (DEPRECATED)

* LockWidth — Forces virtual canvas to lock to with if true, height if false (boolean)
(DEPRECATED)

* Extents — A rectangular area that describes the extents of the scenes world (x, y, w, h rect)

* AllowSuspend — Determines if the scene can be suspended when other scenes are activated
(boolean)

* Clipping — A rectangular area that represents the visible area of the scene (X, y, w, h rect)

* Active — Initial scene active state (boolean)

* Visible — Initial scene visible state (boolean)

* Layers — The number of visible layers that the scene should use (integer)

* Layer — The visual layer that this scene should be rendered on (integer)

* Colliders — The maximum number of colliders that the scene should support (integer)

* Current - If true then the scene is made the current scene (boolean)

* Colour / Color — The initial colour of the scene (1, g, b, a colour)

* Opacity — The scenes opacity level (0 - 255)

* Timeline — The time line that should be used to animate the scene

* (Camera — Current camera

* OnSuspend — Provides an actions group that is called when the scene is suspended

* OnResume — Provides an actions group that is called when the scene is resumed

* OnCreate - Provides an actions group that is called when the scene is created

* OnDestroy - Provides an actions group that is called when the scene is destroyed

* OnKeyBack - Provides an actions group that is called when the user presses the back key

* OnKeyMenu - Provides an actions group that is called when the user presses the menu key

* OnOrientationChanged - Provides an actions group that is called when the user changes the
devices orientation

Page 30 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

* Gravity — Box2D directional world gravity (x, y 2d vector)

* WorldScale — Box2D world scale (x, y 2d vector)

* Batch — Tells the system to batch sprites for optimised rendering (boolean)

* AllowFocus — If set to true then this scene will receive input focus events that the current
scene would usually receive exclusively. This is useful if you have a HUD overlay that has
functionality but it cannot be the current scene as the game scene is currently the current
scenel Anim

* DoSleep — If set to true then actors that utilise physics will be allowed to sleep when they
are not moving / interacting

* Style — Sets scene properties from a pre-defined style (see Style tag)

* Physics — Enables or disables physics processing in the scene (boolean)

* Bubbling — If set to true then input events will bubble down to this element from child actors

3.16 Animating Scene Components

Scenes allow an animation time line to be attached to them that animates various properties of the
scene. The following properties are currently supported:

* (Camera Position — Cameras current position
* (Camera Angle— Cameras current angle

* (Camera Scale— Cameras current scale

* Colour — Scenes current colour

* Opacity — Current scene opacity

* Clipping — Scenes current clipping extents

* Visible — Scenes current visible state

* Timeline — The currently playing timeline

* Camera — change current camera

Any of these properties can be set as an animation target

Page 31 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.17 Creating a Custom Scene

Whilst ClwGameScene can suffice for most tasks, you may find that you need to create your own
type of scene that has functionality specific to your game or app. You begin the creation of a custom
scene by deriving your own scene class from CIwGameScene then overloading the following
methods to provide implementation:

virtual int Init(int max_collidables = 128, int max_layers = 10, bool doSleep =
true);

virtual void Update(float dt);

virtual void Draw();

Here's a quick example:

class MyGameScene : public CIwGameScene

{

public:
MyGameScene() : CIwGameScene() {}
virtual ~MyGameScene();

virtual int Init(int max_collidables = 128, int max_layers = 10, bool doSleep
= true)

{

}
virtual void Update(float dt)

{
}
virtual void Draw()

{
}

CIwGameScene: :Init(max_collidables, max_layers, doSleep);

CIwGameScene: :Update(dt);

CIwGameScene: :Draw();

b

We have provided a very basic implementation of Init(), Update() and Draw() which call the base
CIwGameScene class methods so we keep its functionality in-tact.

You can take the implementation one step further (or maybe two) by implementing both the
[IwGameXomlResource and IIlwGameAnimTarget interfaces to allow instantiation of your custom

class from XOML and to allow your class to be a target for animation time lines.

Firstly lets take a look at XOML enabling your custom scene class. To get IwGame to recognise
your class whilst parsing XOML files you need to do a few things:

* Derive your class from liwGameXomlResource and implement the LoadFromXoml method
* Create a class creator that creates an instance of your class then add this to the XOML

engine

Lets start by taking a look at step 1.

Page 32 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

Because we have derived our class from CIwGameScene we already have the support for step 1.
However we would like to insert our own custom attribute tags so we need to make a few changes.

Lets take a look at our new class with those changes:

class MyGameScene : public CIwGameScene

{
public:
// Properties
protected:
float Gravity;
public:
void setGravity(float gravity) { Gravity = gravity; }
float getGravity() const { return Gravity; }
// Properties End
public:
MyGameScene() : CIwGameScene(), Gravity(1e.ef) {}
virtual ~MyGameScene();
virtual int Init(int max_collidables = 128, int max_layers = 10, bool doSleep
= true)
{
CIwGameScene: :Init(max_collidables, max_layers, doSleep);
}
virtual void Update(float dt)
{
CIwGameScene: :Update(dt);
}
virtual void Draw()
{
CIwGameScene: :Draw();
}
// Implementation of IIwGameXomlResource interface
bool LoadFromXoml (IIwGameXomlResource* parent, bool load_children,
CIwGameXmlNode* node)
{

if (!CIwGameScene::LoadFromXoml(parent, load_children, node))
return false;

// Add our own custom attribute parsing
for (CIwGameXmlNode:: AttribIterator it = node->attribs_begin(); it != node-
>attribs_end(); it++)

{
unsigned int name_hash = (*it)->getName().getHash();
if (name_hash == CIwGameString::CalculateHash("Gravity"))
{
setGravity((*it)->GetValueAsFloat());
}
}

return true;

¥

Page 33 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

Our new class now basically supports a Gravity attribute that we will eventually be able to set in
XOML using something like:

<MyGameScene Name="GameScene" Gravity="9.8">
</MyGameScene>

However, before we can do that we need to let the XOML system know about our new type of class
(MyGameScene), so it can be instantiated when the XOM parser comes across it. To do this we
need to create a creator:

class MyGameSceneCreator : public IIwGameXomlClassCreator

{
public:
MyGameSceneCreator()

{
)

ITwGameXomlResource* CreateInstance(IIwGameXomlResource* parent) { return new
MyGameScene(); }
s

setClassName("MyGameScene");

The creator basically defines the tag name "MyGameScene" and returns an instance of the
MyGameScene class when Createlnstance() is called.

To get the XOML system to recognise our creator we need to add it to the XOML parsing system
using:

// Add custom MyGameScene to XOML system
IW_GAME_XOML->addClass(new MyGameSceneCreator());

Now XOML integration is out of the way, lets take a quick look at enabling our class as an
animation target.

Page 34 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

To enable a class as an animation target we derive it from IIwGameAnimTarget and implement the
UpdateFromAnimation() method. Luckily we derived our MyGameScene class from the
ClwGameScene class which already provides this functionality. Lets take a quick look at how we
extend the animation update method to account for animating our gravity variable.

bool UpdateFromAnimation(CIwGameAnimInstance *animation)

if (CIwGameScene: :UpdateFromAnimation(animation))
return true;

// Add our own custom animating property
unsigned int element_name = animation->getTargetPropertyHash();

if (element_name == CIwGameString::CalculateHash("Gravity"))

{
CIwGameAnimFrameFloat* frame = (CIwGameAnimFrameFloat*)animation-
>getCurrentData();
setGravity(frame->data);
return true;
}

return false;

We added the above code to our MyGameScene class definition. We begin by calling the base
UpdateFromAnimation() method so we can keep the existing animation properties of the scene. We
then add our own custom check for the Gravity variable. If the animation property matches Gravity
then we set the gravity to the provided interpolated value.

Page 35 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.18 Creating Custom Actions

XOML's event / action system is very powerful, allowing you to tie certain events to collections of
actions without writing any code. Lets take a quick look at an example:

<!-- Create back button -->
<InertActor Name="Back" Position="-120, 10" Size="200, 90" SrcRect="600, 333, 200,
90" Image="sprites2" OnTapped="BackAction" OnBeginTouch="BackBeginTouch"
OnEndTouch="BackEndTouch">
<Actions Name="BackAction">
<Action Method="SetTimeline" Paraml="fly out_back" Param2="PauseMenu" />
</Actions>
<Actions Name="BackBeginTouch">
<Action Method="SetTimeline" Paraml="buttonin_animl" />
<Action Method="PlaySound" Paraml="ui_tap" />
</Actions>
<Actions Name="BackEndTouch">
<Action Method="SetTimeline" Paraml="buttonout_animl" />
</Actions>
</InertActor>

In the above XOML our actor handles the events OnEndTouch, OnTapped and OnBeginTouch.
Each of these events calls an actions list when the event occurs on that object. Below the actor
definition we have three action lists defined that correspond to the actions that are specified in our
events:

<Actions Name="BackAction">
<Action Method="SetTimeline" Paraml="fly out_back" Param2="PauseMenu" />
</Actions>

<Actions Name="BackBeginTouch">
<Action Method="SetTimeline" Paraml="buttonin_animl" />
<Action Method="PlaySound" Paraml="ui_tap" />
</Actions>

<Actions Name="BackEndTouch">
<Action Method="SetTimeline" Paraml="buttonout_animl" />
</Actions>

The first action collection “BackAction” is called when a user performs a tap action on “Back”
actor. This collection contains a single action which contains a method called “SetTimeline” and
two parameters “fly out back” and “PauseMenu”.

This action actually changes the time line of the PauseMenu object to the fly out back animation
time line (defined elsewhere in XOML). However, how does the system know how to do this and

more importantly how do we define our own actions that we can call from XOML events?

Well firstly it depends on where the action is being called as certain object types have their own list
of actions. In addition, there is also a global list of actions carried by the global resource manager.

Page 36 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited
Here we will take a look at adding our own custom action to the global resource manager.

The first thing we need to do is derive a class from [ITwGameXomlAction and implement the
Execute() method like this:

class CustomXomlAction_Global : public ITwGameXomlAction
{
public:
CustomXomlAction_Global() {}
{
// Set out action name
setActionName("customactionl™);
}
void Execute(IIwGameXomlResource* source, CIwGameAction* action)
{
CIwGame* game = NULL;
CIwGameScene* scene = NULL;
CIwGameActor* actor = NULL;

// Determine the scene, game and possibly actor that called the action
if (source->getClassTypeHash() == CIwGameXomlNames::Scene_Hash)

{
scene = (CIwGameScene*)source;
game = scene->getParent();

}

else
if (source->getClassTypeHash() == CIwGameXomlNames: :Actor_Hash)

{

actor = (CIwGameActor*)source;
scene = actor->getScene();
game = scene->getParent();

}

// TODO: Do something with the action here (Paraml and Param2 contain
parameters

}
}s
Now that we have an action object we need to tell the XOML system that its available using:
IW_GAME_XOML->addAction(new CustomXomlAction_Global());

We would place this call somewhere in our main boot up so it gets called before any XOML parsing
that contains this action begins.

Now lets take a look at a bit of XOML that shows the use of our new action:

<Actions Name="BackAction">
<Action Method="CustomeActionl" Paraml="Hello World!" Param2="Im an action!"™ />
</Actions>

Page 37 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

3.19 Augmenting Scenes

A scene once declared in XOML can later be updated / augmented with additional XOML code
elsewhere. For example, lets say that you declare some common scene that contai9ns a basic
background and some other elements that are common across a number of screens. You can later
load the scene and then augment it by declaring the scene again then supplying the additional
elements inside the newly declared scene:

<Scene Name="CommonScene" >
<Original_Elementl />
<Original Element2 />
<Original_Element3 />

</Scene>

Now declare a 2" scene with the same name:

<Scene Name="CommonScene">
<Extra_Elementl />
<Extra_Element2 />
<Extra_Element3 />
</Scene>

In memory the scene now looks like this:

<Scene Name="CommonScene" >
<Original_Elementl />
<Original_Element2 />
<Original Element3 />
<Extra_Elementl />
<Extra_Element2 />
<Extra_Element3 />

</Scene>

Page 38 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.0 ClwGameActor Object — Sprites With Brains

4.1 Introduction

Whilst our title comparison suggests that actors are simply sprites with brains they have the
potential to be much more.

Going back to comparison in the scene introduction section, actors play a pivotal role in our scenes,
each actor having its own unique role and visual appearance. Actors are the building block of the
game, they provide the actual unique functionality and visuals that make up the game as a whole.
They can provide any type of functionality from a simple bullet fleeting across the screen to
something as complex as a dynamic machine that modifies its behaviour and appearance based
upon data streamed from a web server.

A ClwGameActor is a very generic object that provides quite a lot of functionality out of the box.
The idea is for developers to create their own actor types from the base CIwGameActor class then
implement their own custom functionality within its Update() method. The basic functionality
provided by CIwGameActor includes:

* Support for actor pooling to help reduce memory fragmentation
* Unique names so they can be searched

* Actor types

* Size, Margin and Docking

* Position, Depth, Origin, velocity and velocity damping

* Angle, angular velocity and angular velocity damping

* Scale and Colour

* Draggable state

* Layers

* Active and visible states

* Avisual that represents it on screen

* Animation timeline that can be attached to the visual

* Collision size / rectangle

* Wrapping at scenes extents

* Instantiate itself from XOML

* Other actor linkage (used to connect actors in a child / parent style system)
* A Box2D physical body consisting of a material and shape
* Box2D collision category, mask and group

* Managing and clean up of actor local animation timelines
* Managing and clean up of actor local events / actions

* Data bindings

Note that any changes made to the actor will automatically be applied to the actors visual.

Page 39 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

As IwGame progresses more actor types with additional functionality will be created to create more
out of the box style game objects (plug-in actors if you will). For the moment the following actors
have been created for you:

* ClwGameActorImage — This object represents a basic image based actor which has an
associated image and animation. (Actorlmage in XOML)

* ClwGameActorText — This object represents a basic text based actor which has an
associated font and animation. (ActorText in XOML)

* ClwGameActorParticles — This object represents a complex particle based actor system
consists of manypatricles that move independently and have varying life spans.
(ActorParticles in XOML)

A word of warning, do not forget to call the based classes Init(), Reset(), Update(), UpdateVisual()
methods from your own derived classes or the underlying functionality will not be provided.

Actors contain their own actions and timelines managers which allows the actor to search and
maintain its own collection of actions and timelines. This helps to cut down scene and global
managers and helps to cut down action and timeline search times. As the cope of local actions and
timelines are local to the actor you also do not need to worry about name clashes.

Page 40 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.2 Creating Actors

Creating an actor is very simple as the following code shows:

// Create player actor
MyActor* actor = new MyActor();
if (actor == NULL)

return NULL;

actor->Init();
actor->setName("Playerl");
actor->setPosition(x, y);

// Add player actor to the scene
scene->addActor(actor);

In the above code we create a a basic MyActor object, which is a class that I created derived from
ClwGameActor giving us the base CIwGameActor functionality. However, adding this code into a
game wouldn't actually see anything as we have not assigned a visual element to the actor.
ClwGameActor does not handle the creation of a visual for you, instead it handles the rendering and
update of a visual and its animations.

To get developers started with actors we included the ClwGameActorImage that will create a basic
image based actor that supports animation.

If you require your actor to support Box2D physics then you should either define the
Box2DMaterial and Shape in XOML or if creating manually then call:

InitBody(Scene, shape, material, &Position, Angle, com.x, com.y);

This can be called before or after CIwGameA ctor::Init()

Page 41 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.3 Creating a ClwGameActorimage

Creating an image based actor is a little more complicated, lets take a look at some example code:

// Create a new instance
ActorPlayer* actor = new ActorPlayer();
if (actor == NULL)

return NULL;

// Create player actor
actor->setScene(scene);
actor->Init(image, 36, 40);
actor->setPosition(x, y);

// Add player actor to the scene
scene->addActor(actor);

Creation is very similar to creating a basic CIwGameA ctor with the additional complication of
having to pass an image to the actors Init() method.

Looking at the above code we create an ActorPlayer, which is a class that I created derived from
ClwGameActorImage as we want some basic image functionality.

We then call the actors its Init() method to set up actor internals. We give the actor a name so that
we can find it later then set its world position to the centre of the scene. Finally we add the actor to
the scene.

You will notice that ActorPlayer's Init() method has quite a a few parameters. When we call Init(....)
we are actually calling CIwGameActorImage::Init(....) and passing along all the details shown in the
code above which includes an image that will represent our actor (or more usually an image atlas),
and the width and height of the visual on screen (in virtual canvas coordinates). Internally
ClwGameActorImage will create a sprite to display our actor.

The end product of the above code is an actor that can be seen, moved around, scaled, rotated etc..

Now lets take a look at a slightly more complicated ezmple that creates an image based actor that
uses an animation time line (more details on time line's later):

Page 42 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

// Create a new instance
ActorPlayer* actor = new ActorPlayer();
if (actor == NULL)

return NULL;

// Create an animation timeline to hold our image animation
CIwGameAnimTimeline* timeline = new CIwGameAnimTimeline();

// Create and set up our face animation
CIwGameAnimInstance* face_anim = new CIwGameAnimInstance();
face_anim->setAnimation(anim);

face_anim->setTarget(actor, "SrcRect");
timeline->addAnimation(face_anim);

timeline->play();

// Create player actor
actor->setScene(scene);
actor->Init(image, 36, 40);
actor->setTimeline(timeline);
actor->setPosition(x, y);

// Add player actor to the scene
scene->addActor(actor);

I have marked the changes from the previous example.
The first set of changes deals with creating a time line object then creating the instance of an
animation and adding that to the time line. This process allows the actor to track and update its own

animations

In the last change we simply assign the time line to the actor, the actor will now take care of playing
the animation and updating the actors visual with animation changes.

Page 43 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.4 Text Based Actors

Text based actors enable you to instantiate text into the scene with very little effort from code or
more easily from XOML. Thse text objects can be use very much in the same way as image based
actors in that they can be moved around, scaled, rotated, hit tested or even have physics and
collision applied to them.

Lets firstly take a look at creating a text based actor in code:

// Find our preloaded font
CIwGameFont* font = (CIwGameFont*)IW_GAME_GLOBAL_RESOURCES->getResourceManager()-
>findResource("fontl", CIwGameXomlNames::Font_Hash);

// Create a text actor

CIwGameActorText* text_actor = new CIwGameActorText();
text_actor->Init(font);

text_actor->setText("Hello World!");
text_actor->setRect(CIwRect(-100, -100, 200, 200));
text_actor->setColour(@, 0, 0, 255);
text_actor->setPosition(0, 0);
text_actor->setAngle(45);

// Add to the scene
CIwGameScene* scene = findScene("Scenel");
scene->addActor(text_actor);

In the above code we firstly locate our font (which we have already preloaded into the resource
system) then we create a text based actor from ClwGameActorText initialising it with the font. We
then set the text, rect and some other parameters.

We now search for the scene we want to place the actor in and it to the scene.

Now lets take a look at how to instantiate a text based actor in XOML:

<ActorText Position="@, @" Rect="-100, -100, 200, 200" Angle="45" Font="fontl" Text="Hello
World!" Colour="@, @, @, 255" />

As you can see the XOML definition is much more compact and readable.

Page 44 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.5 Particle System Actors

From v.030 of IwGame the new particle system based actor is available. This actor is special in that
it is optimised for creating, displaying and updating a complete system of sprites (kind of like its
own sprite manager). The advantage of this actor is that it does not have to deal with each particle
as a separate actor object. The CIwGameActorParticles actor supports both manual and auto
generation of particles. Auto generation can be controlled using a number of a control parameters.

Particles have a number of properties that can be adjusted:

* Visual

* Position

* Velocity

* Velocity Damping
* Gravity

* Scale

* Scale Velocity

* Scale Velocity Damping

* Angle

* Angle Velocity

* Angle Velocity Damping

* Colour

* Colour Velocity

e Colour Velocity Damping

* Depth

* Depth Velocity

* Depth Velocity Damping

* Active state

* Visible state

* Lifespan — Duration of particle in seconds

* SpawnDelay — The amount of time to wait before spawning for the first time
* Lives — Number of times the particle will re-spawn (-1 for infinite)

The CIwGameActorParticles class contains two methods for generating random particles:

void GenerateRandomParticles(int count, CIwRect& src_rect, CIwFVec4& colour, CIwFVec4&
colour_velocity, float duration, int repeat_count, float spawn_delay_change, float gravity)
void GenerateRandomParticles(int count, CIwGameActorParticle* particle, CIwRect& src_rect,
float duration, int repeat_count, float spawn_delay_change)

Both of these methods will generate a number of particles based on a set of limits.

To determine which particle parameters are generated randomly the CIwGameActorParticles class
supports the following methods:

Page 45 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

void setPositionMode(eParticleMode mode)

void setAngleMode(eParticleMode mode)

void setScaleMode(eParticleMode mode)

void setVelocityMode(eParticleMode mode)

void setAngVelocityMode(eParticleMode mode)
void setScaleVelocityMode(eParticleMode mode)
void setDepthMode(eParticleMode mode)

void setDepthVelocityMode(eParticleMode mode)

By setting the mode to PAM_Random the specified parameters will be generated randomly.

When parameters are generated the following methods specify limits to the random formulas used
to generate the parameters:

void setPositionRange(CIwFVec2& range)

void setAngleRange(CIwFVec2& range)

void setScaleRange(CIwFVec2& range)

void setDepthRange(CIwFVec2& range)

void setVelocityRange(CIwFVec4& range)

void setAngVelocityRange(CIwFVec2& range)
void setScaleVelocityRange(CIwFVec2& range)
void setDepthVelocityRange(CIwFVec2& range)

Lets take a look at some code that generates an explosion type particle system:

CIwGameActorParticles* GameScene::AddExplosion(int num_particles, float x, float y, float
scale, float depth, int layer, float gravity)
{

// Create explosion particle actor

CIwGameActorParticles* actor = new CIwGameActorParticles();

addActor(actor);

actor->Init(num_particles);

actor->setImage((CIwGameImage*)ResourceManager->findResource("spritesl”,
CIwGameXomlNames: :Image_Hash));

actor->setPosition(x, y);

// Set random paramaters

actor->setScaleMode (CIwGameActorParticles: :PAM_Random);
actor->setAngVelocityMode (CIwGameActorParticles: :PAM_Random);
actor->setVelocityMode(CIwGameActorParticles: :PAM_Random);

// Set paramater limits

CIwFVec2 scale_range(scale, scale + scale / 2);
actor->setScaleRange(scale_range);

CIwFVec2 angle_range(-5, 5);
actor->setAngleRange(angle_range);

CIwFVec4 vel range(-5, 5, -5, 5);
actor->setVelocityRange(vel_range);

CIwRect src_rect(908, 440, 100, 100);

CIwFVec4 colour(255, 255, 255, 255);

CIwFVec4 colour_vel(0, 0, 0, -5);

Page 46 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

// Gnnerate the particles
actor->GenerateRandomParticles(num_particles, src_rect, colour, colour_vel, 2, 1, 0,
gravity);

return actor;

Here we create a particle actor, set up the which parameters should be randomised then set the
random limits. Finally we tell the actor to generate random particles

Now lets take a quick look at generating particles manually in code:

CIwGameActorParticles* GameScene::AddStream(int num_particles, float x, float y, float
scale, float depth, int layer, float gravity)
{
// Create stream particle actor
CIwGameActorParticles* actor = new CIwGameActorParticles();
addActor(actor);
actor->Init(num_particles);
actor->setImage((CIwGameImage*)ResourceManager->findResource("spritesl”,
CIwGameXomlNames: :Image_Hash));
actor->setPosition(x, y);
CIwRect src_rect(800, 291, 68, 65);
CIwFVec4 colour(255, 255, 255, 128);
CIwFVec4 colour_vel(o, 0, 0, -3);

// CReate and add particles
float spawn_delay = 9;
for (int t = @; t < num_particles; t++)

{
CIwGameActorParticle* p = new CIwGameActorParticle();
p->LifeSpan = 1;
p->Lives = -1;
p->SpawnDelay = spawn_delay;
p->Gravity = gravity;
p->Colour = colour;
p->ColourVelocity = colour_vel;
p->DepthVelocity = -0.01f;
actor->addParticle(p, src_rect);
spawn_delay += (float)1.0f / num_particles;
}

return actor;

This method creates a particle actor then manually creates a stream of particles that spawn at
slightly different times to create a stream type particle system.

Page 47 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

Particle actors can also be created in XOML. Lets take a quick look at an example:

<ActorParticles Name="StreamParticles" Image="spritesl" Position="@, ©" Scale="1.0"
Depth="1.0" Layer="1" VelAngMode="random" VelMode="random" AngMode="random"
ScaleMode="random" PositionRange="100, 100" AngleRange="0, 360"
AngVelRange="-5, 5" ScaleRange="0.25, 0.5" DepthRange="0.5, 1.0"
VelRange="-2, 2, -2, 2" ScaleVelRange="0, -0.1" DepthVelRange="0, 0">
<Particle Count="10" Position="0, 0" VelocityDamping="0.95, ©.95"
SrcRect="908, 440, 100, 100" ColourVelocity="@, @, @, -4" Duration="2"
Repeat="-1" SpawnDelay="0" />
<Particle Position="0, 0" VelocityDamping="0.95, 0.95" SrcRect="908, 440, 100, 100"
ColourVelocity="0, @, 0, -4" Duration="2" Repeat="-1" SpawnDelay="0" />
<Particle Position="0, 0" VelocityDamping="0.95, ©.95" SrcRect="908, 440, 100, 100"
ColourVelocity="0, @, @, -4" Duration="2" Repeat="-1" SpawnDelay="0.4" />
<Particle Position="@, @" VelocityDamping="0.95, ©.95" SrcRect="908, 440, 100, 100"
ColourVelocity="0, @, @, -4" Duration="2" Repeat="-1" SpawnDelay="0.8" />
<Particle Position="0, 0" VelocityDamping="0.95, ©.95" SrcRect="908, 440, 100, 100"
ColourVelocity="0, @, @, -4" Duration="2" Repeat="-1" SpawnDelay="1.2" />
<Particle Position="@, " VelocityDamping="0.95, ©.95" SrcRect="908, 440, 100, 100"
ColourVelocity="0, @, @, -4" Duration="2" Repeat="-1" SpawnDelay="1.6" />
</ActorParticles>

The above XOML firstly generates 10 random particles at time 0, followed by 4 additional particles
at times 0.4, 0.8, 1.2 and 1.6 seconds.

If you would like finer grained control over particle actors then you can simply derive your own
version from ClwGameActorParticles

Page 48 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.6 Actor Lifetimes

Actors will persist within the scene until a) the scene is deleted b) you explicitly remove them or the
recommended method c) they remove themselves. An actor can easily remove and delete itself from
the scene by returning false from its Update() method. Here's an example:

bool ActorPlayer::Update(float dt)

{
// If fade timer has timed out then delete this actor
if (FadeTimer.HasTimedOut())
{
return false; // returning false tells the scene that we no need to be removed
}
// Calculate our opacity from time left on fade timer
int opacity = FadeTimer.GetTimelLeft() / 2;
if (opacity > 255) opacity = 255;
Colour.a = opacity;
return CIwGameActorImage: :Update(dt);
}

4.7 Actor Naming and Finding Actors

As mention previously for scenes, actors also named objects, each instance of an object that you
wish to query should have its own unique name (per scene) so that it can be located and modified at
a later date.

You can find an actor in a particular scene using:

CIwGameActor* actor = scene->findActor(“Playeril”);
if (actor != NULL)
{

}

// Do somethinig with the actor

There are three ways to locate actors within a scene:

CIwGameActor* findActor(const char* name);
CIwGameActor* findActor(unsigned int name_hash);
CIwGameActor* findActor(int type);

These allow you to search for actor by string, hash or type. Note that searching by type will return
the first and only the first instance of that particular actor type. This is very useful if you want to
find a unique actor type, for example the player.

Page 49 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.8 Actor Types

When developing games I find it incredibly useful to assign different types of actors different type
ID's, this allows me to optimise many area of my code such as collision checks. Carrying a type ID
for each actor also comes in handy when you want to know the types of actor that you are
interacting with.

You can set and get the actors type ID using:

void setType(int type)
int getType() const

4.9 Moving, Rotating and Spinning Actors

Actors come with a very basic physics system that allows movement via velocity and angular
velocity, actors can also be scaled. CIwGameActor provides the following basic functionality to
handle these features:

void setPosition(float x, float y)
CIwFVec2 getPosition()

void setAngle(float angle)

float getAngle()

void setVelocity(float x, float y)
CIwFVec2 getVelocity()

void setVelocityDamping(float x, float y)
void setAngularVelocity(float velocity)
float getAngularVelocity() const

void setAngularVelocityDamping(float damping)
void setScale(float scale)

float getScale() const

Note that velocity and angular velocity damping is a reduction factor that is applied each game
frame to slow down objects linear and angular velocities. Their default values are 1.0f which
provides no damping, setting this value to less than 1.0f will dampen velocity whilst setting it to a
value greater than 1.0f will enhance velocity.

Also note that changing position or angle will not effect velocity.

If the actor was created with Box2D physics enabled then you can also use the supplied force
application methods.

Page 50 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.10 Attaching a Visual and an Animation Timeline
For our actor to become visible on screen we need to assign it a visual component. If you are rolling
your own actor and don't go the CIwGameA ctorImage route then you will need to create and assign

your own visual component to the actor.

To assign a visual to an actor you would call:
void setVisual(CIwGameSprite* visual)

Now when the scene renders the actor it will attenot to render the visual. I want to mention at this
pont that as far as IwGame is concerned a visual is an object type that derived from a
CIwGameSprite (we will cover this later), but for now we wil just say that a sprite as far as IwGame
is concerned is anything that can be displayed, be it a simple image or a complex piece of SVG.

And where you find visuals you will usually find some kind of animation. The actor class supports

attachment of CIwGameAnimTimeline which is basically a collection of animations (we will cover
this in more depth later). To assign a time line we call:

void setTimeline(CIwGameAnimTimeline* timeline) { Timeline = timeline; }

4.11 Changing an Actors Colour

Each actor has its own independent colour (including opacity). All actors are set to a default colour
of white and full opacity. To change the colour of an actor you can call:

void setColour(CIwColour& colour)

Note that an actors colour will be combined with its parents base colour.

4.12 Obeying Scene Extents

By default an actor would merrily travel across the game scene and beyond its extents into oblivion
and out of range coordinates, this can cause a bit of a mess for the underlying math and rendering
routines. To prevent actors from going off into oblivion we can tell them to wrap around to the
other side of the scene if they hit its extents boundary. To force actors to wrap around at the
boundaries of the scene we call setWrapPosition(true):

void setWrapPosition(bool enable)
bool getWrapPosition() const {

Page 51 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.13 Actor Layering

We touched on layering earlier when we talking about layering in scenes. All actors within a scene
exist (visually) on a layer. The layer determines the order in which the actors are rendered with
lower layers appearing below higher layers. The maximum layer that an actor can exist on is
determined by the scene that it lives in. To change the layer that an actor appears on and to retrieve
its current layer we use:

void setLayer(int layer)
int getLayer() const

4.14 Visibility and Active State

You can query an actors visibility state and set its visibility state using:

void setVisible(bool visible)
bool isVisible() const

You can query an actors active state and set its active state using:

void setActive(bool active)
bool isActive() const

Note that when an actor is made inactive it will also become invisible. However making an actor
invisible will not make it inactive.

4.15 Resetting Actors

Because actors can be part of an object pooling system and may not get re-initialised when re-used,
we provide the functionality to reset them to a default state. This allows developers to re-use objects
and not worry about the previous state of the object. Just remember to call the underlying
ClwGameActor::Reset() method from your own Reset() method to ensure that the actor is
completely reset.

Page 52 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.16 Collision Checking

Right now IwGame does not carry out collision checks for you, instead it calls back each actor in
the scene after the scene has been updated to give each possible colliding object a chance to check
and respond to collisions. To take advantage of this functionality you need to implement the
following handler in your derived actor class:

virtual void ResolveCollisions() = 0;

A basic actor to actor collision method is included in CIwGameActor to allow actors to test for
overlap based on the size set by setCollisionRect();

When a collision does take place, actors can notify each other by calling:

virtual void NotifyCollision(CIwGameActor* other) = 0;
Here's a quick example showing how to use the system:

void ActorPlayer::ResolveCollisions()

{
// Walk the scenes actors
for (CIwGameScene:: Iterator it = Scene->begin(); it != Scene->end(); ++it)
{
// Only test collision against ball type actors
if ((*it)->getType() == ActorType_Ball)
// Check for physical collision
if (CheckCollision(*it))
{
// Norify ourselves that we collided with ball actor
NotifyCollision(*it);
// Notify ball actor that we collided with it
(*it)->NotifyCollision(this);
}
}
}
}

Note that if you are using integrated Box2D then you safely bypass this collision check system.

Page 53 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.17 Creating an Actor from XOML

Actors can be created declaratively using XOML mark-up, making actor creation much easier and
more intuitive. Below shows an example of an actor declared using XOML:

<MyActor Name="Playerl" Position="@, 0" Size="100, 100" Angle="45" SrcRect="0, 0,
36, 40" Image="Sprites" Timeline="PlayerlIntro2" />

The basic actor tag supports many different attributes that determine how an actor is created and
how it behaves. A description of these tags are listed below:

* Name — Name of the scene (string)

* Style — Style that should be applied to this actor. If a properties that exists in the style is
added to the definition then it replaces the property found in the style

* Type — A numerical type that can be used to identify the type of this actor (integer)

* Position— Position in the scene (x, y 2d vector)

* Origin— Origin in the scene, moves the point around which the actor will rotate and scale (x,
y 2d vector)

* Depth — Depth of the actor in 3D (float — larger values move the sprite further away)

* Velocity — Initial velocity of the actor (X, y 2d vector)

* VelocityDamping — The amount to dampen velocity each frame (x, y 2d vector)

* Angle — The orientation of the actor (float)

* AngularVelocity — The rate at which the orientation of the actor changes (float)

* AngularVelocityDamping — The amount of rotational velocity damping to apply each frame
(float)

* Scale, ScaleX, ScaleY — The scale of the actor (float)

e Colour — The initial colour of the actor (1, g, b, a colour)

* Opacity — Initial opacity (float)

* Layer — The scenes visible layer that the actor should appear on (integer)

* Active — Initial actor active state (boolean)

* Visible — Initial actor visible state (boolean)

* HitTest — If true then this actor will receive touch events

* Collidable — Collidable state of actor (boolean)

* CollisionSize — The circular size of the actor (float)

* CollisionRect — The rectangular collision area that the actor covers (X, y, w, h rect)

* WrapPosition — If true then the actor will wrap at the edges of the canvas (boolean)

* Draggable — When set to true the user can drag the actor around the world with their finger
(boolean)

* Timeline — The time line that should be used to animate the actor

* Box2dMaterial — Sets the physical material type used by the Box2D actor

* Shape — Box2D fixture shape for the Box2D actor

* COM - Centre of mass of Box2D body (x, y 2d vector)

* Sensor — Can be used to set the Box2D actor as a sensor (boolean)

Page 54 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

* CollisionFlags — The Box2D body collision flags (category, mask and group)

e OnTapped, OnTapped2, OnTapped3, OnTapped4, OnTappedS — Multi-touch event handlers
that specify an actions list to call when the user taps the actor

* OnBeginTouch, OnBeginTouch2, OnBeginTouch3, OnBeginTouch4, OnBeginTouch5 —
Multi-touch event handlers that specify an actions list to call when the user begins to touch
the actor

* OnEndTouch, OnEndTouch2, OnEndTouch3, OnEndTouch4, OnEndTouch5 — Multi-touch
event handlers that specify an actions list to call when the user stops to touching the actor

* OnCreate — Event handler that specifies an actions list to call when this actor is created

* OnDestroy — Event handler that specifies an actions list to call when this actor is destroyed

* OnOrientationChange — Event handler that specifies an actions list to call when the screen
changes orientation

* OnCollisionStart — Event handler that specifies an actions list to call when a collision occurs
between two Box2D actors takes place (only if the actor has the iw_notifycollision modifier
attached)

* OnCollisionEnd — Event handler that specifies an actions list to call when a collision ends
between two Box2D actors takes place (only if the actor has the iw_notifycollision modifier
attached)

* LinkedTo — Name of actor that this actor links to (string)

* Docking — When set will dock the actor to an edge of the screen, valid values are top, left,
right, bottom, topleft, topright, bottomleft and bottomright

* Margin — The amount of space to leave around the actor when placed in a container or
docked (left, right, top, bottom), If negative values are passed then sizing will be
proportional to either the parent actor or the scene size

* @GridPos — Grid cell in which to place the actor in a grid (X, y)

* UseParentOpacity — When set to true this actor will scale its own opacity by its parents
opacity (boolean)

* Condition — Condition that must be met to create the actor (variable)

For actors that are derived from CIwGameActorlmage we have the following additional properties:

* Brush / Background specifies the brush to use (use instead of image and SrcRect)

* Image — The image that is to be used as the actors visual (string)

* Size — The on screen visible size of the actor (x, y 2d vector). By not passing a size, the size
will be taken from the brush. If negative values are passed then sizing will be proportional to
either the parent actor or the scene size

* SrcRect — The position and source of the source rectangle in the image atlas (x, y, w, h rect).
Used for panning the portion of a sprite atlas shown allowing frame based animation.

* FlipX — Horizontal flipped state (boolean)

* FlipY — Vertical flipped state (boolean)

* Skew — Four parameter skewing (top, bottom, left, right)

* BeforeChildren — When set to true this actor will be rendered before its children, otherwise
it will be rendered afterwards (boolean)

* Filter — When set to true this actor will rendered using filtering (boolean)

* AlphaMode — Sets the alpha mode that wil be used when rendering this actor (none, half,

Page 55 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

add, sub, blend)
* AspectLock - Locks the aspect ratio of the actor on the specified axis (X, y, Xy or none0)

For actors that are derived from CIwGameActorText we have the following additional properties:

* Font — Name of font to use to draw the text (string)

* Rect — The area thuat the text should be drawn inside of (x, y, w, h rect)

* Text— String to display (string)

* AlignH — Horizontal alignment (centre, left and right)

* AlignV — Verticalalignment (middle, top and bottom)

* Wrap — If true then text is wrapped onto next line if to long (boolean)

» Skew — Four parameter skewing (top, bottom, left, right)

e BeforeChildren — When set to true this actor will be rendered before its children, otherwise
it will be rendered afterwards (boolean)

* Filter — When set to true this actor will rendered using filtering (boolean)

* AlphaMode — Sets the alpha mode that wil be used when rendering this actor (none, half,
add, sub, blend)

* AutoHeight — If set to true then this text actor will resize itself vertically to fit the size of the
contained text

Note that unlike scenes you cannot create an Actor directly as the CIwGameActor class is abstract,
so you must derive your own actor class. More on this later.

In addition, actors must be declared inside a scene tag element as they must have a parent scene and
cannot be declared as resources.

Page 56 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.18 Animating Actor Components

Actors allow an animation time line to be attached to them that animates various properties of the
actor. The following properties are currently supported:

* Position, PositionX, PositionY — Actors current position
* Depth — Actors 3D depth

* Origin — Actors transform origin

* Velocity — Actors current velocity

* Angle — Actors current angle

* AngularVelocity — Actors current angular velocity

e Scale, ScaleX, ScaleY — Actors current scale

* Colour/ Color — Actors current colour

* Opacity — Actors current opacity

* Layer — Actors current visible layer

* Visible — Actors current visible state

* HitTest — Determines if the actor can be tapped

* Timeline — The currently playing timeline

* TimeScale — Scale speed at which attached timelines play back

For actors that are derived from ClwGameActorImage we have the following additional properties:

* SrcRect — Actors currebt bitmapped visual source rectangle
* Size — Actors visible size on screen
* Skew — Four parameter skewing

For actors that are derived from CIlwGameActorText we have the following additional properties:
* Skew — Four parameter skewing

Any of these properties can be set as an animation target

Page 57 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

4.19 Creating a Custom Actor

Whilst CIwGameScene can be instantiated and used as-is, CIwGameActor and
ClwGameActorlmage are abstract and cannot. The actor system is designed this way as the
developer is meant to create their own custom actor types that provide bespoke functionality that is
specific to their game.

You begin the creation of a custom actor by deriving your own actor class from either
ClwGameActor or ClwGameA ctorlmage then overloading the following methods to provide
implementation:

virtual void Init();

virtual bool Update(float dt);

virtual bool UpdateVisual();

virtual void ResolveCollisions() = 0;

virtual void NotifyCollision(CIwGameActor* other) = 0;

Here's a quick example:

class MyActor : public CIwGameActor
{
public:
MyActor() : CIwGameActor() {}
~MyActor() {}

void Init()
{
CIwGameActor::Init();
¥
bool Update(float dt)
{
if (!CIwGameActor: :Update(dt))
return false;
// Here we put our actor specific implementation
return true;
}
bool UpdateVisual()
{
if (!CIwGameActor: :UpdateVisual())
return false;
// Here we put our actor specific rendering code (if any is needed)
return true;
}
void ResolveCollisions() {}
void NotifyCollision(CIwGameActor* other) {}

Page 58 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited
}s
We have provided a very basic implementation of Init(), Update() and UpdateVisual() which call the

base CIwGameActor class methods so we keep its functionality in-tact.

We also provide a none functional implementation of ResolveCollisions() and NotifyCollision() as
these are required methods

You can take the implementation one step further by implementing both the
[IwGameXomlResource and IIlwGameAnimTarget interfaces to allow instantiation of your custom

actor class from XOML and to allow your class to be a target for animation time lines.

Firstly lets take a look at XOML enabling your custom actor class. To get IwGame to recognise
your class whilst parsing XOML files you need to do a few things:

* Derive your class from IIwGameXomlResource and implement the LoadFromXoml

method

* Create a class creator that creates an instance of your class then add this to the XOML
engine

Lets start by taking a look at step 1.

Because we have derived our class from CIwGameActor we already have the support for step 1.
However we would like to insert our own custom attribute tags so we need to make a few changes.

Lets take a look at our new class with thiose changes:

class MyActor : public CIwGameActor

{

public:
// Properties

protected:
int NumberOfEyes;

public:
void setNumberOfEyes(int num_eyes) { NumberOfEyes = num_eyes; }
float getNumberOfEyes() const { return NumberOfEyes; }
// Properties End

public:

MyActor() : CIwGameActor() {}
~MyActor() {}

void Init()
{
CIwGameActor::Init();
}
bool Update(float dt)
{

if (!CIwGameActor::Update(dt))
return false;

Page 59 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

// Here we put our actor specific implementation

return true;

}
bool UpdateVisual()
{
if (!CIwGameActor::UpdateVisual())
return false;
// Here we put our actor specific rendering code (if any is needed)
return true;
}
void ResolveCollisions() {}
void NotifyCollision(CIwGameActor* other) {}
// Implementation of IIwGameXomlResource interface
bool LoadFromXoml (IIwGameXomlResource* parent, bool load_children,
CIwGameXmlNode* node)
{

if (!CIwGameActor::LoadFromXoml(parent, load_children, node))
return false;

// Add our own custom attribute parsing
for (CIwGameXmlNode:: AttribIterator it = node->attribs_begin(); it != node-
>attribs_end(); it++)

{
unsigned int name_hash = (*it)->getName().getHash();
if (name_hash == CIwGameString::CalculateHash("NumberOfEyes"))
{
setNumberOfEyes((*it)->GetValueAsInt());
}
}

return true;

iE;

Our new class now basically supports a new NumberOfEyes attribute that we will eventually be
able to set in XOML using something like:

<MyActor Name="AlienCritter" Position="100, 100" Size="100, 100" NumberOfYes="3" />

However, before we can do that we need to let the XOML system know about our new type of class
(MyActor), so it can be instantiated when the XOML parser comes across it. To do this we need to
create a XOML class creator:

Page 60 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

class MyActorCreator : public IIwGameXomlClassCreator

{
public:
MyActorCreator()

{
)

IIwGameXomlResource* CreateInstance(IIwGameXomlResource* parent) { return new
MyActor(); }
};

setClassName("MyActor");

The creator basically defines the tag name "MyActor" and returns an instance of the MyActor class
when Createlnstance() is called.

To get the XOML system to recognise our new creator we need to add it to the XOML parsing
system using:

// Add custom MyActor to XOML system
IW_GAME_XOML->addClass(new MyActorCreator());

Now XOML integration is out of the way, lets take a quick look at enabling our class as an
animation target.

To enable a class as an animation target we derive it from [IwGameAnimTarget and implement the
UpdateFromAnimation() method. Luckily we derived our MyActor class from the CIwGameActor
class which already provides this functionality. Lets take a quick look at how we extend the
animation update method to account for animating our NumberOfEyes variable.

bool UpdateFromAnimation(CIwGameAnimInstance *animation)

if (CIwGameActor::UpdateFromAnimation(animation))
return true;

// Add our own custom animating property
unsigned int element_name = animation->getTargetPropertyHash();

if (element_name == CIwGameString::CalculateHash("NumberOfEyes"))

{
CIwGameAnimFrameFloat* frame = (CIwGameAnimFrameFloat*)animation-
>getCurrentData();
setNumberOfEyes((int)frame->data);
return true;
}

return false;

Page 61 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

We added the above code to our MyActor class definition. We begin by calling the base
UpdateFromAnimation() method so we can keep the existing animation properties of the actor. We
then add our own custom check for the NumberOfEyes variable. If the animation property matches
NumberOfEyes then we set the number of eyes to the provided interpolated value.

4.20 Modifying an Actors Behaviour

Each actor has its own modifier stack that enables you to build complex interactive actors without
having to create a brand new actor type. The basic idea is that you break the functionality of your
different actors into components then implement these components as modifiers which are then
attached to the actor. Modifiers can be created and added to the XOML system allowing you to
attach modifiers using mark-up.

See the Modifiers section for more details.

Page 62 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

5.0 ClwGameString — String Building Without Fragmentation

5.1 Introduction

Strings are used extensively throughout game development, making it an incredibly important
subject. We use strings for everything from naming objects to presenting interactive text to the
player.

String building can be a nightmare for memory managers as constantly rebuilding strings causes
many memory allocations and deallocations fragmenting the available memory into small hard to
use units.

A string builder is a class that allows you to build a string using a predefined sized buffer or at the
very least a buffer than can be resized. CIwGameString supports the following features:

* String builder functionality

* Named strings

* String concetanation and resizing
* String building from integers, floats and boolean types
* String comparison

e String splitting

* Stream style string searching

* Find strings between markers

* Character replacement

« HTML decoding

* Hex encoding / decoding

* URL encoding / decoding

* Change of case

Page 63 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

5.2 Basic String Building

Strings can be created from raw text, integers, floats and boolean variables as shown below:

CIwGameString string("Hello");
CIwGameString int_string(1234);
CIwGameString int_string(100.234f);
CIwGameString int_string(true);

Strings can also be concatenated:

CIwGameString string("Hello");

string

+=

. How you doing";

// Creation
// Creation
// Creation
// Creation

from raw text
from an integer
from a float
from a boolean

If you are creating a string and you know that it will require quite a number of concatenations then
you should set its initial size to prevent memory resizing, here's an example:

CIwGameString string;

string.
string
string
string
string

allocString(1024);

+= "Hello!";

+= " How you doing.";

+= " I'm great thanks, how are you?";
+= " Fantastico!";

5.3 Comparing Strings

There are 5 ways to compare a string or part of a string:

bool
bool
bool
bool
bool

// here we preallocate 1024 bytes of memory for the string

operator== (const CIwGameString& op);
operator== (const char* op);
operator== (unsigned int hash);

Compare(const char* pString, int len) const;
Compare(int start, const char* pString, int len) const;

The most optimal way to compare two strings is to compare two CIwGameString objects with auto
hashing enabled on both, this will involve only a basic check of both strings hashes to see if they
match. You do however need to enable auto hashing on both strings before you compare them, e.g.:

Page 64 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

CIwGameString stringl("Stringl");
CIwGameString string2("Stringl");

stringl.setAutoHash(true);
string2.setAutoHash(true);
if (stringl == string2)

{

}

If a string is set to auto hashing then the new hash value will be recalculated every time the string is
changed. For performance it is best to disable auto hashing then enable it when the string has
finished building.

5.4 Stream Style Searching

CIwGameString is set up to allow stream like searching whereby your last searched position will be
saved, allowing you to carry out additional searches from where the last search left off. This type of
string searching is incredibly useful when it comes to parsing areas of memory. The following
methods can be used:

int Find(const char* string); // Simple string search

int FindNext(const char* string, int len); // Searches from last find position
for test string

int FindNext(const char* string); // Searches from last find position
for test string

void FindReset(); // Resets the find position to start
of string

int StepFindIndex(int amount); // Adjust the find position by the
specified

int getFindIndex() // Gets the current find index

int GetNextMarkedString(char start_mark, char end_mark, int &offset); // Returns
a string marked by start and end marker characters

Page 65 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

5.5 Getting Strings Values

CIwGameString provides some useful methods for converting from strings to certain other types:

int GetAsInt();

bool GetAsBool();

float GetAsFloat();

int GetAsListOfInt(int *int_pool);

int GetAsListOfFloat(float* float_pool);

* GetAslInt() - Returns the integer value of the string

* GetAsBool() - Returns the boolean value of the string. Valid values include true and 1, all
other values are classed as false

* GetAsFloat() - Returns the floating point value of the string

* GetAsListOfInt() - Returns a list of integers (string should contain comma separated values)

* GetAsListOfFloat() - Returns a list of floats (string should contain comma separated values)

5.5 Other Useful String Tools

ClwGameStribng contains a few additional utility methods to help make various tasks easier:

void Replace(char chr, char with);

int Contains(char c) const;

void ReplaceHTMLCodes();

void URLEncode(const char* str);

void URLDecode();

void HexEncode(const char* str, int num_bytes);
void HexEncode();

void HexDecode();

void ToUpper();

void ToLower();

bool SplitFilename(CIwGameString& filename, CIwGameString& ext);
bool GetFilenameExt (CIwGameString& ext);

CIwGameSlotArray<CIwGameString*>* Split(char split_char);

* Replace() - Replaces all occurrences of char “chr” with char “with” in a string

* Contains() — Returns true if a string contains the specified character

* ReplaceHTMLCodes() — Replaces HTML style codes such as & with their ACII
equivalents

* URLEncode() — Encodes a string as URL encoded

* URLDecode() — Decodes a URL encoded string

* HexEncode — Encodes the text as hexadecimal

* HexDecode — Decodes a string of Hex to text

* ToLower() — Converts a string to all lower case

* ToUpper() — Converts a string to all upper case

Page 66 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited
* SplitFileName() - Splits a string into file name and extension strings

* GetFilenameExt() - Extracts a file names extension as a string
* Split — Splits a string using a specified separator into an array of strings

Page 67 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

6.0 ClwGameFile — File System Access

6.1 Introduction

Veering off course a little, I'm not going to cover some of the more lower level features of IwGame
as many of them are required to gain a complete understanding on how IwGame works.

IwGame encapsulates Marmalade's file system neatly into a single class called CIwGameFile. This
class enables the following features:

* Auto file closing when the file object goes out of scope

* Reading and writing of local files

* Reading and writing of memory based files

* Blocking and none blocking reading of files from an external source such as a web site /
server

* File name splitting

* File type retrieval

6.2 Loading a Local File

Loading a local file is very simple, as is shown in the following example:

// Here we declare a string, open a file then read some data into it
CIwGameString data;

CIwGameFile file;

if (file.Open("\\my data.txt", "rb"))

int len = file.getFileSize();
data.allocString(len);
data.setLength(len);
file.Read((void*)data.c_str(), len);

Page 68 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

6.3 Saving a Local File

Saving a local file is also a very simple, as is shown in the following example:

// Here we declare a string, open a file then write the string to it
CIwGameString data("Hello storage, how you doing?");

CIwGameFile file;

if (file.Open("\\my data.txt", "wb"))

{

}

file.Write((void*)data.c_str(), data.GetLength());

6.4 Loading a Memory Based File

Loading a memory file is just as easy as opening a local file, as is shown in the following example:

// Here we declare a string, open a file then read some data into it from memory
CIwGameString data;
CIwGameFile file;

if (file.Open(my_data_in_memory, my_data_length))

int len = file.getFileSize();
data.allocString(len);
data.setLength(len);
file.Read((void*)data.c_str(), len);

Page 69 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

6.5 Loading a Remote File

The format of loading a file for remote is the same as local file loading

// Here we declare a string, open a remote file then read some data into it
CIwGameString data;

CIwGameFile file;

if (file.Open("http://www.myserver.com/my data.txt", NULL, true))

{
int len = file.getFileSize();
data.allocString(len);
data.setLength(len);
file.Read((void*)data.c_str(), len);
}

With a few differences. The first differenece is the very noticable filename change to that of a web
address. The second more subtle difference is the inlusion of a 3™ parameter to Open() which tells
the method to block until the complete file has been downoaded or an error occurs.

With modern games the user expects action on the screen most of the time, so sitting loading your
assets from a server with no viusal update would not be a great idea, ruling blocking remote file
loading out for anything more than a few files. A better alternative is to use asynchonrous file

downloading that is none blocking, allowing the game loop to proceed whilst your assets load.

Loading a remote file using a none blocking method can be achieved as shown below:

int32 WebFileRetrievedCallback(void* caller, void* data)

¢ CIwGameFile* file = (CIwGameFile*)caller;
// file->getContent() and file->getContentLength() contain the data and data size
delete file;
return 0;

}

// Initiate a none blocking file download

CIwGameFile* image_file = new CIwGameFile();
image_file->setFileAvailableCallback(WebFileRetrievedCallback, NULL);
image_file->Open("http://www.battleballz.com/bb_icon.gif", NULL, false);

Examining the above code we can see that we set up a callback so that we get notified when our file
has been downloaded. Next we initiate the file download but this time passing "false" as our
blocking parameter to ensure that the download does not block the main thread.

Page 70 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

If you don't fancy setting up a callback, you can poll the CIwGameFile instead to see if the file has
been retrieved using:

bool CIwGameFile::isFileAvailable()

6.6 Other Useful File Tools

ClwGameFile also contains a few additional useful tool type methods:

static void GetComponents(const char* file_path, CIwGameFilePathComponents&
components);

static bool GetFileType(const char* file_path, CIwGameString& type);

static bool isHttp(const char* file_path, int path_len);

* GetComponents() — Splits a path into its separate drive, path, name and extension
components

* GetFileType() — Returns the file type of the supplied file name

* isHttp() — Checks a file name to see if it uses the http protocol

Page 71 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.0 ClwGamelnput — | Need Input

7.1 Introduction

A game wouldn't really be much of a game if the user could not interact with it. IwGame provides
the CIwGamelnput singleton class to manage all game input. CIwGamelnput manages the
following types of input:

* Single and multi-touch input
* Button and key states

* On screen keyboard input

* Acceleromter

* Compass

Access to input methods are provided via the IW_GAME _INPUT macro, for example:

if (IW_GAME_INPUT->getTouchCount() > @)

{
}

If you are using CIwGame then you do not need to worry about initialising, updating or cleaning up
the input system, however if you are rolling your own solution then you will need to take care of
these steps yourself, here's a quick example showing how to do this:

// Initialise the input system
CIwGameInput::Create();
IN_GAME_INPUT->Init();

// Main loop
while (1)

{
// Update input system

IW_GAME_INPUT->Update();
}

// Shut down the input system
IW_GAME_INPUT->Release();
CIwGameInput: :Destroy();

Page 72 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.2 Checking Availability

As IwGame is designed to work across multiple platforms you should check to ensure that a
particular input system is available before you use it. Here’s a quick example showing how to check
that the pointer input is available:

// Check to see that the pointer is available
if (IW_GAME_INPUT->isPointerAvailable())

{

// Check to see if any touches have been made
int num_touches = IW_GAME_INPUT->getTouchCount();

IwGame provides a number of methods to check for particular input systems availability:

bool isPointerAvailable() // Returns availability of the pointer

bool isKeysAvailable() // Returns availability of keys

bool isOSKeyboardAvailable() // Returns availability of on screen keyboard
bool isAccelerometerAvailable() // Returns availability of accelerometer

bool isCompassAvailable() // Returns true if compass is available

7.3. Single and Multi-touch Touches

CIwGamelnput supports single and multi-touch events, allowing you to check for multiple
simultaneous touches. However many devices do not support multi-touch events so a method has
been provided to determine multi-touch support:

bool isMultiTouch() // Returns multitouch capability

If you are developing a game or app that relies on multi-touch then you should implement a fall
back method that will work with single touch devices. Touch modes is a good solution that can help
mirror multi-touch functionality by putting the pointer into different modes, such as move, scale,
rotate etc.. and allow the user to switch between them.

No matter if you are using single or multi-touch functionality retrieving touches is done in very
much the same way.

Page 73 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.4 Working with Touches

ClwGamelnput provides methods that enable you to detect and collect touch data. The usual
process is to determine if any touches have been made by calling IW_GAME INPUT-
>getTouchCount() and then take a look at the touches list to see what touch events occurred. Here's
an example:

// Check to make sure that the pointer is available
if (IW_GAME_INPUT->isPointerAvailable())

{
// Get the total number of current touches
int num_touches = IW_GAME_INPUT->getTouchCount();
if (num_touches != 0)
{
// Check list of touches to see which are active
for (int t = ©; t < MAX_TOUCHES; t++)
{
// Get the touch data
CIwGameTouch* touch = IW_GAME_INPUT->getTouch(t);
if (touch->active)
{
// Do something with the touch
}
}
}
}

Note that getTouch() returns the CIwGameTouch struct for the touch at te specified index.
CIwGameTouch looks like this:

struct CIwGameTouch

{
public:
int X, Y; // Touch position
int pPX, py; // Previous touch position
int dx, dy; // Delta position
bool touched;
bool active; // Touch active state
bool prev_active; // Touch active state (last frame)
int id; // ID of touch - The system tracks multiple touches by
assigning each one a unique ID
}s

If you want to track a touch to monitor its status then you should store its ID and use
ClwGamelnput::getTouchByID(id) to find it again later.

Page 74 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.5 Checking Key / Button States

As you expand your list of supported devices for your products you will discover that devices come
in all sorts of different configurations, some will even have hard keyboards / keypads and buttons.
For example, the Samsung Galaxy pro has a full QWERTY keyboard and almost all Android
devices have hardware buttons for menu, home and back.

To query the state of a a key / button (buttons are mapped to keys) you call the following methods
of ClwGamelnput:

bool isKeyDown(s3eKey key) // Tests if a key is down

bool isKeyUp(s3eKey key) // Tests if a key is up

bool wasKeyPressed(s3eKey key) // Tests if a key was pressed
bool wasKeyReleased(s3eKey key) // Tests if a key was released

Each method takes an s3eKey as input, a full list of possible keys can be found in s3eKeyboard.h.

Note that to detect the back and menu buttons you should check both s3eKeyBack
/ s3eKeyAbsBSK and s3eKeyMenu / s3eKeyAbsASK respectively.

7.6 On Screen Keyboard

As most devices do not have hardware keyboards an on screen keyboard is the only method of
inputting text into the device. IwGamelnput provides access to this functionality via the
showOnScreenKeyboard():

const char* showOnScreenKeyboard(const char* prompt, int flags = @, const char* default_text
= NULL);

Calling this method will display a modal on screen keyboard with the provided prompt text and
using the supplied default text (pass NULL if you do not require default text). Flags provides a hint
to the system to let it know what type of keyboard you want to display to the user, possible values
are:

e S3E_OSREADSTRING_FLAG_PASSWORD - A Password entry keyboard

* S3E_OSREADSTRING_FLAG_EMAIL An email address entry keyboard
* S3E_OSREADSTRING_FLAG_URL A web URL entry keyboard

e S3E_OSREADSTRING_FLAG_NUMBER A Numeric entry keyboard

Passing 0 for flags will use the default keyboard.

Once the on screen keyboard has been dismissed the entered text will be returned as a string.

Page 75 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.7 Accelerometer Input

An accelerometer is a device usually found inside phones and tablets that measures acceleration.
This is great for gaming as you can use the actual angle or speed at which the user tilts their device
to affect game play. For example, you could for example use the accelerometer to allow the player
to navigate a ball around a maze or maybe determine how hard the player wants to hit a ball.
However the accelerometer does have limitations. If the users phone is perpendicular to the floor
then changes in reading may not be registered.
Accelerometer hardware is usually quite power hungry so in order ot use it you need to start it
using:

IW_GAME_INPUT->startAccelerometer();
And when not in use you can turn it off using:

IW_GAME_INPUT->stopAccelerometer();

Per frame update of the accelerometer is automatically taken care of by CIwGamelnput.

To read the current position of the accelerometer you call:
CIwVec3 accelerometer_pos = IW_GAME_INPUT->getAccelerometerPosition();

Because the user can potentially start a game with the phone held at any angle, reading
accelerometer readings are best made from a frame of reference. This is usually the initial position
that the user is holding the device at when they start the game. To set the reference point for the
accelerometer call:

IW_GAME_INPUT->setAccelerometerReference();

This will set the reference point for offset reads to the current position of the users phone. You may
want to display a short instructions screen at this point that informs the user how to hold the phone.

To read the accelerometer position with respect to the reference point call:

IW_GAME_INPUT->getAccelerometerOffset();

Page 76 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.8 Compass Input

The digital compass is a device that uses the Earth's ambient magnetic field to determine the
orientation of the users phone. This allows you to measure the angle of the device and the direction
in which its pointing.

Like the accelerometer hardware the compass is usually quite power hungry so in order to use it you
need to start it using:

IW_GAME_INPUT->startCompass();
And when not in use you can turn it off using:

IW_GAME_INPUT->stopCompass();

Per frame update of the compass is automatically taken care of by CIwGamelnput.

To read the current orientation and heading of the compass you call:

CIwVec3 compass_heading = IW_GAME_INPUT->getCompassHeading();
int compass_directiom = IW_GAME_INPUT->getCompassDirection();

7.9 Input and the Marmalade Emulator
The Marmalade SDK simulator will allow you to simulate multi-touch functionality in your
application but you firstly need to enable it. To enable this functionality you need to:
* Qo to the simulator menu and select Configuration Pointer
* Tick “Report multi-touch available” and “enable multi-touch simulation mode”

Now that you have enabled multi-touch simulation you can use the middle mouse button to
place touches. You can move the touches around by holding the middle mouse button down
over the placed touch and move it. To remove a multi-touch touch, simply click the middle

mouse button over the touch again.

The PC keyboard provides more than adequate emulation of a real device keyboard. In addition

certain keyboard keys act as buttons, for example the F1 key will simulate the menu button press on
Android and F3 will simulate the back button.

Page 77 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

7.10 Other Useful Utility Methods

The CIwGamelnput class provides some additional utility functionality that can speed up
development:

bool hasTapped()

bool isTouching(int index)
bool isDragging(int index)
CIwVec2 getTouchedPos(int index)
CiwGameTouch* getFirstTouch()

CIwVec2 getDragDelta(int index)
bool isBackPressed()

void resetBackPressed()

bool isMenuPressed()

void resetMenuPressed()

* hasTapped() - Returns true the user has tapped on the display

* isTouching() - Returns true if the user is touching the display

» isDragging() - Returns true if the user is moving their finger on the display

» getTouchedPos() - Returns the position on the display that the user is touching

» getFistTouch() - Returns the first touch made

» getDragDelta() - Returns the number of pixels the user last moved their finger across the
display

* isBackPressed() - Returns true if the user is pressing the back button

* resetBackPressed() - Resets the back button pressed status

* isMenuPressed() - Returns true if the user is pressing the menu button

* resetMenuPressed() - Resets the menu button pressed status

Page 78 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

8.0 ClwGameTimer — Time and Timers

8.1 Introduction

Time plays a very important role in app and game development. Time allows us to perform useful
tasks such as time events, fire off events at regular intervals and stabilise animations etc..

CIwGameTimer provides a software based timer mechanism for timing events as well a static
method for retrieving the current time in milliseconds. Timers will not automatically fire off events

when they expire, instead they have to be polled.

Timers provide additional functionality for calculating how much time is left on the timer as well as
how much time has expired since the timer was started.

Timers don't really have much of an overhead so you can create as many as you like.

8.2 Getting the Current Time

To retrieve the current time in milliseconds CIwGameTimer provides a static method:

uint64 GetCurrentTimeMs ()

8.3 Creating and Using Timers

Creating a timer is a simple case of declaring or allocating a CIwGameTimer then setting it off
going. To check the timer you then poll it to check to see if it has timed out. Here's an example:

// Create a timer that expires after 10 seconds
CIwGameTimer BusyTimer;
BusyTimer.setDuration(10000) ;

// Check to see if the timer has timed out
if (BusyTimer.HasTimedOut())

{
}

Timers can be reset, stopped and started using Reset(), Stop() and Start().

Page 79 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

A few additional utility methods are also included in the CIwGameTimer class:

bool
bool
void
uinte4
uinte4
uinte4
uinte4

hasStarted()

hasStopped()

setAutoReset (bool auto_reset)
GetElapsedTime()
GetTimeDiff(uint64 this_ time)
GetTimeDiff()

GetTimeLeft()

* hasStarted() - Returns true if the timer was started
* hasStopped() - Returns true if the timer has stopped

* setAutoReset() - If true the timer will automatically restart itself when it runs out

* GetElapsedTime() - Returns the amount of time elapsed since the timer was started

* GetTimeDiff(time diff) - Returns the time difference between the supplied time and the start
of the timer

* GetElapsedTime() - Returns the amount of time left on the timer

Page 80 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

9.0 IwGameHttp — Playing Outside the Box

9.1 Introduction

Modern apps and games are no longer limited to the confines of their local memory, they now have
the power to play outside their limited box and interact with other external systems such as web
sites and web services. For example, posting the players latest achievements to Facebook and
Twitter feeds or playing an interactive game with friends on different devices running different
operating systems.

IwGame provides access to the outside world via IwGameHttp. IwGameHttp provides the following
functionality:

* Queues requests between your game and a web server

* Supports POST and GET requests

* Calculates user-agent based on platform / device and obtains IP address
* Error handling and reporting

IwGameHttp consists of a number of classes:

* CIwGamHttpHeader — Specifies headers that can be sent with POST and GET requests

* ClwGameHttpPostData — Specifies data that can be sent with a POST request

* ClwGameHttpRequest — Represents an HTTP request

* CIwGameHttpManager — The main HTTP manager that queues requests between the game
and a web server

Page 81 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

9.2 The HTTP Manager ClwGameHttpManager

ClwGameHttpManager is a singleton class that acts as the mediator between your game and an
external web service. All requests sent to the HTTP manager are queued and processed in the order
in which they are created. Requests are sent out one at a time, the next request will wait until the
previous request returns or times out.

Access to the HTTP manager methods are provided via the IW_GAME HTTP macro, for example:
IW_GAME_HTTP_MANAGER->AddRequest (&AdRequest);

Because not all games will have a need for HTTP communications, ClwGameHttpManager will
not automatically be created and updated for you unless you request it when creating the main
IwGame object.

You can also handle this yourself as shown below:

// Initialise the http manager
CIwGameHttpManager: :Create();
IW_GAME_HTTP_MANAGER->Init();

the HTTP manager will need to be updated every game frame inside your main loop as shown
below:

while (game_running)

{
// Do game related stuff
// Update http manager
IW_GAME_HTTP_MANAGER->Update();
¥

And finally the HTTP manager must be cleaned up on app exit

// Clean up http manager
IW_GAME_HTTP_MANAGER->Release();
CIwGameHttpManager: :Destroy();

Page 82 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

9.3 IP Addresses and User-Agents

Many web services require some method of identifying the mobile device that is accessing them.
Identification usually comes in the form of the user-agent and IP address.

The user-agent is a header that browsers send to web server when they request data from it. From
the user-agent the web server can determine what type of device and operating system the device
has as well as what language the user is using

Some web services also require the users IP address. An IP address is a unique address that
identifies the users mobile device on the internet. IP addresses can be local (to the network they are
on, such as a home or office network) or remote. If your device is connected to the net over Wi-Fi
then it will very likely be assigned a local IP address. If the devices is connected via the carrier then
your device will have a remote IP address assigned to it by your carrier. This is a very important
distinction to take note of as some services will not or cannot serve content to devices with local IP
addresses.

Once you have initialised the ClwGameHttpManager you can retrieve the user-agent and IP address
by calling:

CIwGameString& getUserAgent () // Returns current user-agent
CIwGameString& getIPAddress() // returns current IP address

If you would like to supply your own custom user-agent and / or IP address then you can do that
also using:

void setUserAgent(const char* user_agent)
void setIPAddress(const char* ip_address)

Page 83 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

9.4 POST and GET

POST and GET are two methods of communicating with a web server over HTTP. A POST is used
to send data to the server whilst a GET is usually used to retrieve data from a server. You can
actually think of POST and GET as commands that are sent to a server, with POST implying that
you want to modify the state of the server in some way by sending data to it, whilst GET implies
that you want to simply retrieve data and not modify it.

However, most web services support both GET and POST, allowing GET to modify the state of the
server as data “can” be passed to the server as part of the URL. You have probably seen many long
URL's of the form http://www.someserver.com/add_this.php?

name=mat&socks=3 &trousers=10&method=update (don't click the URL it means nothing). Notice
how we are passing the items socks=3, trousers=10,method=update to the server. One major
problem with using GET where POST should be used is data caching. Many servers now employ
data caching techniques to reduce server load (they no longer have to go to the back end database
and perform expensive SQL queries, instead they cache the web page or some data relating to the
web page). So no matter what parameters you pass you could be returned cached data!

GET is however very convenient to use, you simply append all of your variables and values
separated by ampersands onto the end of the URL.

Performing a POST on the other hand is only slightly more complicated. Instead of appending all
your data onto the URL you package the data up into a string and set the data as the HTTP requests
POST body. You then tell the server what type of data it is going to get by setting the Content-Type
header and then tell it the size of the data by setting the Content-Length header.

IwGame supports both headers and post data via the CIwGameHttpHeader and
ClwGameHttpPostData classes. More on these classes later.

No matter which method you choose POST or GET, both will return a response from the web
server, which can be read by calling CIwGameHttpRequest::getContent();

9.5 Setting Up Headers

In the world of HTTP communications, headers play a very important role, they carry around
information that tells the web server and the device lots of important information, such as the user-
agent used, the accepted types of data (MIME types), cookies, the size of the POST body etc. in
fact, you can pass anything you like. A good summary of the standard header types can be found at
http://en.wikipedia.org/wiki/List of HTTP_header_fields .

Page 84 of 229

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://www.someserver.com/add_this.php?name=mat&socks=3&trousers=10&method=update
http://www.someserver.com/add_this.php?name=mat&socks=3&trousers=10&method=update

IwGame Game Engine SDK Programming by Pocketeers Limited

9.6 Performing a GET

To perform a GET you simply create a ClwGameHttpRequest and fill it in as shown below:

// Our GET completed callback
int32 GetCompletdCallback(void* caller, void *data)

{
CIwGameHttpRequest* request = (CIwGameHttpRequest*)caller;

// request->getContent() and request->getContentLength() contains the
// request data and data length

IW_GAME_HTTP_MANAGER->RemoveRequest(request); // Remove request from http manager
queue
delete request; // Delete the request

return 0;

CIwGameHttpRequest* Request = new CIwGameHttpRequest();

Request->setGET(); // Tell the manager that we want to do a GET

// Set the GET URL

Request->setURI("http://www.someserver.com/add_this.php?
name=mat&socks=3&trousers=10&method=update");

// Set a callback so we know when the request completes

Request->setContentAvailableCallback (&GetCompletdCallback, NULL);

// Set the user-agent header

Request->SetHeader("User-Agent"”, UserAgent.c_str());

// Queue our request

IW_GAME_HTTP_MANAGER->AddRequest(Request);

The callback GetCompletedCallback() is called when the HTTP manager retrieves the data, you can
use getContent() to read the retrieved data. Note that you must also remove the request from the http
manager queue to prevent the queue from becoming cluttered with previously processed requests.

Page 85 of 229

http://www.someserver.com/add_this.php?name=mat&socks=3&trousers=10&method=update
http://www.someserver.com/add_this.php?name=mat&socks=3&trousers=10&method=update

IwGame Game Engine SDK Programming by Pocketeers Limited

9.7 Performing a POST
Performing a POST is strikingly similar with only a few additional changes.

To perform a POST you simply create a CIwGameHttpRequest and fill it in as shown below:

// Our POST completed callback
int32 PostCompletdCallback(void* caller, void *data)

{
CIwGameHttpRequest* request = (CIwGameHttpRequest*)caller;

// request->getContent() and request->getContentLength() contains the
// request data and data length

IW_GAME_HTTP_MANAGER->RemoveRequest(request); // Remove request from http manager
queue
delete request; // Delete the request

return 0;

CIwGameHttpRequest* Request = new CIwGameHttpRequest();

Request->setPOST(); // Tell the manager that we want to do a POST

// Set the POST URL

Request->setURI("http://www.someserver.com/add_this.php");

// Set a callback so we know when the request completes

Request->setContentAvailableCallback (&PostCompletdCallback, NULL);

// set the POST body

Request->setBody("name=mat&socks=3&trousers=10&method=update");

// Set the user-agent header

Request->SetHeader("User-Agent"”, UserAgent.c_str());

// Set the POST body content MIME type as application/x-www-form-urlencoded

Request->SetHeader("Content-Type", "application/x-www-form-urlencoded");

// Set the body content length as a string

Request->SetHeader("Content-Length", CIwGameString(Request-
>getBody().GetLength()).c_str());

// Queue our request

IW_GAME_HTTP_MANAGER->AddRequest(Request);

The callback PostCompletedCallback() is called when the HTTP manager retrieves the data, you
can use getContent() to read the retrieved data. Note that you must also remove the request from the
http manager queue to prevent the queue from becoming cluttered with previously processed
requests.

Page 86 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

10.0 ClwGameAudio — Say No To Silent Movies

10.1 Introduction

Games would be pretty boring if they had no sound effects or music. Audio has always played an
important role in games since they first games appears many years ago. IwGame provides access to
sound effect and streamed music playback via the CIwGameAudio singleton.

ClwGameAudio has the following features:

* Compressed WAV software sound effect playback
* MP3 playback via the devices media engine

* Support for multiple simultaneous sound effects

* Control over volume and pitch

IwGame contains a number of classes for dealing with audio playback:

* CIwGameSound — Represents a sound effect
* CIwGameSoundCollection — Represents a collection of sound effect
* ClwGameAudio — The game audio manager

If you are using CIwGame then you do not need to worry about initialising, updating or cleaning up
the audio system, however if you are rolling your own solution then you will need to take care of
these steps yourself, here's a quick example showing how to do this:

// Initialise audio system
CIwGameAudio: :Create();
IW_GAME_AUDIO->Init();

// Main loop

while (1)

{
// Update audio
IW_GAME_AUDIO->Update();

}

// Shut down audio
IW_GAME_AUDIO->Release();
CIwGameAudio: :Destroy();

Sound effects are compressed using 8 and 16 bit ADPCM IMA (not Microsoft's version).

Page 87 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

10.2 The Audio Manager ClwGameAudio

ClwGameAudio is a singleton class that is responsible for playing sound effects and streamed
music

Access to the audio manager methods are provided via the IW_GAME AUDIO macro, for
example:

IW_GAME_AUDIO->PlaySound("explosion");

ClwGameAudio provides the following methods:

CIwGameSound* PlaySound(const char* name);
CIwGameSound* PlaySound(unsigned int name_hash);

void StopSound(const char* name);

void StopSound(unsigned int name_hash);

void StopAllSounds();

void PauseAllSounds();

void ResumeAllSounds();

bool PlayMusic(const char* name, int repeat_count = ©); // Plays music from
a local file

bool PlayMusic(void* buffer, uint32 buffer_length, uint32 repeat_count); //
Plays music from a memory buffer

void StopMusic();

void PauseMusic();

void ResumeMusic();

bool isMusicPlaying();

Sound effects are played by name whilst music is played by file name or via a memory buffer (for
pre-loaded audio).

CIwGameAudio contains a sound collection that stores all of the sound specs for all sound effects

within the game. A sound collection is populated from a Marmalade resource group (more on this
later)

Page 88 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

10.3 Adding Audio Resources

10.3.1 Adding Sound Effects

Sound effects are loaded and tracked by the Marmalade resource system. To give our audio
manager access to them we need to load the group containing the audio and assign it to the
ClwGameAudio's sound collection. Here's an example showing the process:

// Load audio resource group into the resource manager
IwGetResManager()->LoadGroup("Audio.group™);

// Set up audio
CIwResGroup* AudioGroup = IwGetResManager()->GetGroupNamed("Audio");
IW_GAME_AUDIO->setGroup(AudioGroup);

Our sound effects are now available and ready to be played.

Note that when you change the current audio resource group being used by CIwGameAudio, all
sound effects will be stopped and all previous sound effects will be deleted and replaced with the
new set.

10.3.2 Creating a Resource Group

Marmalade supports a resource grouping system via a resource manager called IwResManager().
This manager loads groups of resources in the using .group files. A typical resource group for our
sound effects would like this:

CIwResGroup
{

name "Audio"

// Sound sample WAV files
"./explosion.wav"

// Create sound specs (can be thought of as sound materials)

CIwSoundSpec
{
name "explosion" # The name we want to use to refer to this
sound effect in out code
data "explosion" # The WAv file name (without .wav
vol 0.7 # Default volume to be played at
loop false # Do we want this sound effect to play
forever?
}
// Create a sound group to contain all of our sound specs
CIwSoundGroup
{
name "sound_effects" # Name of our sound group
maxPolyphony 8 # Maximum sounds that can be played
simultaneously

Page 89 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

killOoldest false # Tell system not to stop the oldest sound
effects frmo playing if we run out of channels
addSpec "explosion" # Add the explosion sound spec to our sound
group
}
}

The above resource group script basically creates a resource group named “Audio”, which we later
access in our code by name via:

// Set up audio
CIwResGroup* AudioGroup = IwGetResManager()->GetGroupNamed("Audio");

It then creates a sound specification for our explosion sound effect. Finally we create a new sub

group called “sound_effects” that contains all of our sound specifications.

If you want to learn more about Marmalade's resource management system then take a look at our

blog on the object at http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-
marmalades-resource-management-system/

We also have an additional blog directly related to creating audio resource groups at

http://www.drmop.com/index.php/2011/10/07/quick-and-easy-audio-and-music-using-s3eaudio-
and-iwsound/

Once a resource group has been created you need to add it to the assets section of your mkb project
file like so:

assets

{
(data-ram/data-glesl, data)

audio.group.bin

Note that audio,group.bin gets built from our Audio.group file when the x86 Debug build of our
game is ran. So remember to run the game on the emulator before deploying to a device to ensure
that the latest version of this file is created.

Page 90 of 229

http://www.drmop.com/index.php/2011/10/07/quick-and-easy-audio-and-music-using-s3eaudio-and-iwsound/
http://www.drmop.com/index.php/2011/10/07/quick-and-easy-audio-and-music-using-s3eaudio-and-iwsound/
http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-marmalades-resource-management-system/
http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-marmalades-resource-management-system/

IwGame Game Engine SDK Programming by Pocketeers Limited

10.4 Playing and Modifying Sound Effects
Once a group of sound effects are assigned to the audio managers using IW_GAME_ AUDIO--
>setGroup(), all sound effects within the resource group will be created and added to the audio
managers internal sound collection, at this point in time each sound effect will be instantiated as a

CIwGameSound.

When we play a sound effect using the following code:

CIwGameSound* sound = IW_GAME_AUDIO->PlaySound("explosion");

A CIwGameSound object is returned from PlaySound(). This object allows us to control the sound
after it has been started.

If we take a quick look at CIwGameSound functionality we see that it has a number of methods
available to modify and check the status of the sound being played:

void Play()

void Stop()

void SetVolume(float vol)
void SetPitch(float pitch)
bool isPlaying()

These methods peform the following function:

* Play — Plays the sound effect

* Stop() - Stops the sound effect from playing

* SetVolume() - Sets the volume of the sound effect. A value of 1.0f represents full volume

* SetPitch() - Sets the pitch of the sound effect. A value of 1.0f represents normal playback
pitch

* isPlaying() - Returns true if the sound is currently playing

Sound effects can be stopped, paused and resumed en-mass using the following CIwGameAudio
methods:

void StopAllSounds();
void PauseAllSounds();
void ResumeAllSounds();

You also also set / get the master sound and music volumes using the following ClwGameAudio
methods:

Page 91 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

void setSoundVolume(float vol);
float getSoundVolume();
void setMusicVolume(float vol);
float getMusicVolume()

10.5 Playing Streamed Music

Streamed audio playback is usually used to play music that sits in the background of the game to
give it atmosphere. IwGame utilises the media player on the device to playback audio from either
storage or a pre-loaded memory buffer.

However, before music can be played back, we must firstly check that the device supports the codec
that we used to encode the music we are attempting to play. Here is a quick examle showing how to
check and play an MP3 file using CIwGameAudio:

// Check to see if MP3 codec is supported
if (IW_GAME_AUDIO->isMusicCodecSupported(S3E_AUDIO_CODEC_MP3))

{

// Play some music
IW_GAME_AUDIO->PlayMusic("music.mp3");

Below is a list of all possible codecs:

S3E_AUDIO_CODEC_MIDI // MIDI files

S3E_AUDIO_CODEC_MP3 // MP3 files

S3E_AUDIO_CODEC_AAC // Raw AAC files
S3E_AUDIO_CODEC_AACPLUS // AAC plus files
S3E_AUDIO_CODEC_QCP // QCP files

S3E_AUDIO_CODEC_PCM // PCM files

S3E_AUDIO_CODEC_SPF // SPF files

S3E_AUDIO_CODEC_AMR // AMR files

S3E_AUDIO_CODEC_MP4 // MP4 or M4A files with AAC audio

Please note that these codecs may change with future versions of the Marmalade SDK and hence
the IwGame engine so please consult the s3eAudioCodec enum located in s3eAudio.h for a full and
up to date list.

Streamed music can also be stopped, paused and resumed. You can also check to see if music is
playing using the following methods of CIwGameAudio:

void StopMusic();

void PauseMusic();
void ResumeMusic();
bool isMusicPlaying();

Page 92 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

11.0 ClwGamelmage — The Art of Game

11.1 Introduction

Lets face it, its possible to play a game without audio, we've all played a game with the audio turned
down and it was still playable, in fact some games have truly awful audio and sound better with the
audio switched off. However, try playing a game with all the graphics switched off, hmm, don’t
think that is going to work.

The brunt of any game is bore by the graphics engine, its usually where most of the games
processing is taking place. Images are pivotal to any game engine (2D game engines at least), even
vector graphic based games cache their vector based offering as images to increase performance.

IwGame provides a class specifically for loading and dealing with images called CIwGamelmage.
CIwGamelmage and associated classes are simple yet powerful supporting the following features:

* Image loading (PNG, GIF and JPEG) from Marmalade resource groups

* Image loading (PNG, GIF and JPEG) from a memory buffer

* Image loading (PNG, GIF and JPEG) from a file located locally or on the web (blocking and
none blocking)

* Creation of PNG's from image data that can be saved or sent to a web server

* Management of collections of images using CIwGameResourceManager

* Instantiation from XOML

11.2 Creating an Image from a Resource

11.2.1 Adding Images

Images are loaded and tracked by the Marmalade resource system. When we create an image we
assign it a name and a resource group. Here's an example showing the process:

// Load our graphics resource group into the resource manager
CIwResGroup* group = IwGetResManager()->LoadGroup(“Graphics.group");
CIwGameImage* image = new CIwGameImage();

image->Init("sprites", group);

// Add the image to global resource manager
IW_GAME_GLOBAL_RESOURCES->getResourceManager()->addResource(image);

Note that if you are using scenes then you can use the scenes resource manager instead of creating
and managing your own. e.g.

Page 93 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

// Add an image to the scenes resource manager
game_scene->getResourceManager()->addResource(image);

Either way, our image is now available and ready to use, well, almost.

The underlying 2D image will not actually be created until it has been loaded / uploaded to video
RAM. There are two ways to accomplish this:

* You can call CIwGamelmage::Load() on the image to force it to be loaded / uploaded.

* Load on demand — The image will be loaded / uploaded when it is first accessed (for
example when the sprite manager attempts to draw a sprite that uses the image)

11.2.2 Creating a Resource Group

Marmalade supports a resource grouping system via a resource manager called IwResManager().
This manager loads groups of resources in the using .group files. A typical resource group for our
graphics would like this:

CIwResGroup
{

name "Graphics"

// Graphics
"./sprites.png"

The above resource group script basically creates a resource group named “Graphics”, which we
later access in our code by name via:

// Add an image to image manager
CIwResGroup* group = IwGetResManager()->LoadGroup(“Graphics.group");

The resource group contains our sprites.png image file.

If you want to learn more about Marmalade's resource management system then take a look at our

blog on the object at http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-
marmalades-resource-management-system/

Once a resource group has been created you need to add it to the assets section of your mkb project
file like so:

Page 94 of 229

http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-marmalades-resource-management-system/
http://www.drmop.com/index.php/2011/10/01/marmalade-sdk-tutorial-marmalades-resource-management-system/

IwGame Game Engine SDK Programming by Pocketeers Limited

assets

{
(data-ram/data-glesl, data)
graphics.group.bin

¥

Note that graphics,group.bin gets built from our Graphics.group file when the x86 Debug build of
our game is ran. So remember to run the game on the emulator before deploying to a device to
ensure that the latest version of this file is created.

11.3 Creating an Image from Memory

We can create an image from a file in memory using the following method CIwGamelmage:

bool Init(void* memory_file, int memory_file_size);

This method of image creation gives you the option to create images from local files or images that
you have downloaded from an external source such as a web server. Here is an example showing
how to create an image from a memory buffer:

// Download an image file from the web
CIwGameFile* image_file = new CIwGameFile();
image_file->Open("http://www.battleballz.com/test_image.jpg", NULL, true);

if (image_file->isFileAvailable() && image_file->getError() ==
CIwGameFile: :ErrorNone)

{
// Create an image from the downloaded JPEG file
CIwGameImage* image = new CIwGameImage();
// Initialise the image with the image file data in memory
image->setName("test_image");
image->Init(image_file->getContent(), image_file->getContentLength());
}

delete image_file;

Note that when creating an image from a memory buffer the image is automatically loaded so
Load() does not need to be called.

Page 95 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

11.4 Creating an Image from a Web Resource

We can create an image from a file located externally on a web server using:

void Init(const char* filename);

This method of image creation gives you the option to create images from local files or images that
you have downloaded from an external source such as a web server. The image will not be loaded
until Load(bool blocking) has been called. If you load an image using none blocking then you will
need to check its loaded status by calling:

if (Image->getState() == CIwGameImage::CIwGameImage_State_Loaded)

11.5 Creating Images from XOML
IwGame allows you to create An image using XOML mark-up language. Here's a quick example:

<Image Name="Buddy" Location="http://www.battleballz.com/bb_icon.gif" Preload="true"
Blocking="false" />

This creates an image named buddy from a GIF file located on the the web. Note that it is preloaded
but will not block the main loop whilst loading. Instead the sprite that is rendering the image will
not appear on screen until the image has been fully downloaded. Images can be loaded locally using
this method also.

We can also declare images that are located in Marmalade resource group files. Here is an example:

<ResourceGroup Name="Levell" GroupFile="Levell.group" Preload="true" />
<Image Name="Sprites" Location="Levell" Preload="true" />

Here we create a resource group called levell then create an image called Sprites, passing the group
name of the group that contains the “Sprites” image. Note that the image name and the name of the
Marmalade resource must match or the resource may not be found.

Please note that images created inside a scene will be local to the scene and will be deleted when
the scene is destroyed.

Page 96 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

12.0 ClwGameSprite — A Sprite for Life

12.1 Introduction

Images wouldn't be much use unless we could move them around the screen, rotate, them, flash
them and perform a whole host of other cool effects on them. A sprite in a visual element that can
be moved around the display and rotated, scaled etc.. For the purpose of this document a sprite is
not just an image based visual, it could be any kind of visual including a line or even a complex
piece of vector graphics.

As explained in our actor discussion earlier, an actor is made of two parts a) a logical component
and b) a visual component. The visual part of an actor is basically a sprite.

If you decided to use the predefined CIwGameActorImage class to derive your actors from then you
will have had an image based sprite created for you automatically. If not then we have some extra
work to do.

At the moment we have two types of sprite:

* ClwGameSprite — A basic generic sprite type that you can use to create your own types of
sprites. It offers no rendering functionality and you are required to implement the base
Draw() method to provide the custom rendering functionality.

* ClwGameBitmapSprite — A generic bitmapped based sprite that provides functionality for
rendering an image based sprite

* ClwGameTextSprite — A generic text based sprite that provides functionality for rendering a
text based sprite

Sprites have the following properties than can be dynamically changed:

* Width and height — Visual width and height on screen

* Position — A position on the screen, relative to the parent sprite manager
* Depth — 3D position (larger values go into the screen)

* Origin — Transform origin

* Angle — Orientation in degrees (IW_ANGLE 2PI == 360 degrees)

* ScaleX — Horizontal sale of sprite (IW_GEOM_ONE == 1.0f)

* ScaleY — Vertical sale of sprite IW_GEOM_ONE == 1.0f)

e Colour — Colour and opacity of the sprite

* Skew — Four parameter skewing

* Filter — If true then filtering is applied

* Visible — Visibility

* BeforeChildren — If true then this sprite is rendered before its children

* Pooled — Determines if the sprite is part of a sprite pool

* Layer — Visible layer that the sprite lives on

* LinkedTo — Used to link sprites together. A sprite that is linked to another sprite will use its

Page 97 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

transform as well as its own
* ClipRect — Clipping rectangle to use to clip the sprites children

A CIwGameBitmapSprite sprite supports the following additional properties:

* SrcX, SrcY, SrcWidth, SrcHeight — Specifies a sub area of a large image to draw instead of
the whole image

* ImageTransform — Marmalade image transform that flip the sprites image on the x and y
axis

Note that bitmapped sprites that are created in code can set the colour of each vertex of the sprite
using

void setColour(int index, CIwColour& colour)

A ClwGameTextSprite sprite supports the following additional properties:

* Text — The string to draw

* Rect — A rectangular area that the string should eb drawn in (relative to the sprites position)
* Font — The font to use to draw the text

* Flags — Marmalade font flags to be applied to the rendered text

* AlignH, AlignV — Marmalade alignment flags used to align the text

During rendering a sprites visual transform is built based upon the sprites position, angle and scale
as well as its parent sprite managers transform. To optimise sprite rendering a sprites visual
transform is only updated if either the position, rotation or scale changes. It will also be updated if
the parent sprite managers transform is modified.

Page 98 of 229

IwGame Game Engine SDK Programming by Pocketeers Limited

12.2 Sprite Manager

The sprite manager (CIwGameSpriteManager) is the system that takes care of tracking and
rendering sprites. When sprites are created they are added to a sprite manager. The sprite managers
geometric transform will be used as the base of the sprites transform, so any translation, rotation or
scaling that is applied to the sprite managers transform will also be applied to all sprites that it is
managing.

The sprite manager handles layers of sprites to allow sprites to be rendered using visible depth
layering. Sprites on lower layers appear below sprites on higher layers. You can define the total
number of layers available to the sprite manager upon its creation using:

void Init(int max_layers = 10);

The default number of layers is set to 10, although you can change this to any value within reason.
Note that if you are using the sprite manager that is created and maintained by a scene then the
scene will determine the number of layers that a sprite manager has. The scene will also be in
charge of updating and rendering the sprite manager.

The sprite manager automatically batch renders sprites to improve performance in scenes that
consists of many sprites. However the font rendering system does not use batch rendering and if
switched on, sprites that exist on the same layer as the text will not be depth sorted correctly. To sort
properly the sprite manager needs to have batching disabled.

The sprite manager also supports a centre of projection for 3D depth rendered sprit